Biorthogonal Bases of Multiwavelets

被引:0
|
作者
Pleshcheva, E. A. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Krasovskii Inst Math & Mech, Ekaterinburg 620990, Russia
基金
俄罗斯科学基金会;
关键词
multiwavelet; mask; biorthogonal basis; scaling function; multiresolution analysis;
D O I
10.1134/S008154381702016X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the construction of biorthogonal bases of multiwavelets from known bases of multiscaling functions is given. It is similar to the method presented in the author's 2014 paper joint with N.I. Chernykh and is based on the same principle: the construction of multiwavelets based on k multiscaling functions employs an analog of the vector product of vectors in a 2k-dimensional space.
引用
收藏
页码:S175 / S185
页数:11
相关论文
共 50 条
  • [21] Fractional Hilbert transforms of biorthogonal wavelets
    Morimoto, Akira
    Ashino, Ryuichi
    Ikebe, Kazuma
    Tatsumi, Motoi
    Mandai, Takeshi
    2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS, 2015, : 347 - 352
  • [22] Generalized Deconvolution Estimation by Multiwavelets
    Cong Wu
    Results in Mathematics, 2023, 78
  • [23] Time Localization of Alpert Multiwavelets
    Severov, P. G.
    RUSSIAN MATHEMATICS, 2012, 56 (05) : 61 - 63
  • [24] Balanced multiwavelets with short filters
    Lian, JA
    Chu, CK
    IEEE SIGNAL PROCESSING LETTERS, 2004, 11 (02) : 75 - 78
  • [25] Biorthogonal wavelets
    Domingues, Margarete Oliveira
    Kaibara, Magda Kimico
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2012, 34 (03):
  • [26] Generalized Deconvolution Estimation by Multiwavelets
    Wu, Cong
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [27] Decomposable pairs and construction of multiwavelets
    Poornima, P.
    Murugesan, K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 665 : 382 - 403
  • [28] Balanced Multiwavelets With Interpolatory Property
    Li, Baobin
    Peng, Lizhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (05) : 1450 - 1457
  • [29] Construction of Symmetric Orthonormal Multiwavelets
    Li, Hong-Yan
    Zhao, Ping
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2010, : 309 - 313
  • [30] Balanced multiwavelets theory and design
    Lebrun, J
    Vetterli, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) : 1119 - 1125