Parameter Estimation for Predictive Simulation of Oscillatory Systems with Model Discrepancy

被引:0
作者
McMahan, Jerry A., Jr. [1 ]
Smith, Ralph C. [2 ]
机构
[1] Univ Dayton, Res Inst, Dayton, OH 45469 USA
[2] North Carolina State Univ, Raleigh, NC 27695 USA
关键词
parameter estimation; Bayesian inversion; modeling errors; oscillation; prediction intervals; ANISOTROPIES;
D O I
10.1016/j.ifacol.2016.10.203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Bayesian framework provides a methodology in which inferences from measurement data can be used to bound the uncertainties in the predictive simulation of a physical system. The accuracy of these bounds relies on the satisfaction of statistical assumptions on the measurement error. Discrepancies between the model and the true physics can invalidate these assumptions. We examine the effect of such model discrepancies in the context of an oscillating cantilever beam. First we illustrate the influence of discrepancies in a simplified model of purely periodic signals and then we observe how discrepancies affect the accuracy of prediction uncertainty bounds using Bayesian parameter inference on a Euler-Bernoulli beam model. Our study shows small changes in the inference setup can result in significant differences in prediction accuracy and calls attention to important considerations for the practical application of Bayesian parameter estimation. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:428 / 433
页数:6
相关论文
共 11 条
[1]   Learning about physical parameters: the importance of model discrepancy [J].
Brynjarsdottir, Jenny ;
O'Hagan, Anthony .
INVERSE PROBLEMS, 2014, 30 (11)
[2]   Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators [J].
Crews, John H. ;
McMahan, Jerry A. ;
Smith, Ralph C. ;
Hannen, Jennifer C. .
SMART MATERIALS AND STRUCTURES, 2013, 22 (11)
[3]  
Detchmendy D. M., 1966, J BASIC ENG, V88
[4]   DRAM: Efficient adaptive MCMC [J].
Haario, Heikki ;
Laine, Marko ;
Mira, Antonietta ;
Saksman, Eero .
STATISTICS AND COMPUTING, 2006, 16 (04) :339-354
[5]   A modelling error approach for the estimation of optical absorption in the presence of anisotropies [J].
Heino, J ;
Somersalo, E .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (20) :4785-4798
[6]   Compensation for geometric mismodelling by anisotropies in optical tomography [J].
Heino, J ;
Somersalo, E ;
Kaipio, JP .
OPTICS EXPRESS, 2005, 13 (01) :296-308
[7]   Bayesian calibration of computer models [J].
Kennedy, MC ;
O'Hagan, A .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :425-450
[8]  
McMahan J., 2014, WORLD C
[9]  
Raol J. R., 2004, IEE CONTROL ENG
[10]  
Smith R. C., 2014, UNCERTAINTY QUANTIFI, V12