Prediction of contact length, contact pressure and indentation depth of Au/carbon nanotube composite micro electrical contact using finite element modeling

被引:16
作者
Robert, Femi [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Elect & Elect Engn, Kattankulathur Campus, Chennai 603203, Tamil Nadu, India
关键词
Electrical contact; Contact surface; Finite element modeling; Contact force; Indentation depth; Contact length; Contact pressure; MULTIWALLED CARBON NANOTUBES; RESISTANCE;
D O I
10.1016/j.apsusc.2019.05.169
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, electrical contact surfaces are investigated to predict and visualize the contact length, contact pressure and indentation depth under applied force. CNT-CNT, Au-CNT, Au-Au, and Au/CNT-Au/CNT contact pairs have been considered for the analysis. Finite Element Modeling (FEM) and analysis is carried out for 2D, semi-circle-square microelectrical contact using COMSOL multiphysics simulation tool. Predicted values are compared with the Hertz model analytical calculations. Contact length and indentation depth of Au/CNT-Au/CNT > Au-Au > Au-CNT > CNT-CNT on the application of force. Also the contact pressure of Au/CNT-Au/CNT < Au-Au < Au-CNT < CNT-CNT. Results indicate that Au/CNT-Au/CNT contact surface performs better for electrical contact applications. When force ranges from 36 mu N to 65 mu N applied on Au/CNT-Au/CNT composite electrical pair, contact length changes from 115.06 nm to 154.61 nm. Also the contact pressures of 1.99 GN/m(2) -02.68 GN/m(2) and indentation depth of 8.14 nm-12.05 nm are observed. These results would be useful in the design of electrical contacts, RF ohmic contacts, nanoelectromechanical system relays, microelectromechanical system switches, nanomanufacturing, and material characterization.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 46 条
[1]   Contact modeling - forces [J].
Adams, GG ;
Nosonovsky, M .
TRIBOLOGY INTERNATIONAL, 2000, 33 (5-6) :431-442
[2]  
An L., International Journal of Theoretical and Applied Nanotechnology, DOI [DOI 10.11159/IJTAN.2013.004, 10.11159/ijtan.2013.004.]
[3]   Measurement of contact resistance of multiwall carbon nanotubes by electrical contact using a focused ion beam [J].
An, Libao ;
Friedrich, Craig R. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2012, 272 :169-172
[4]   Molecular dynamics simulations of the polymer/amine functionalized single-walled carbon nanotubes interactions [J].
Ansari, R. ;
Rouhi, S. ;
Ajori, S. .
APPLIED SURFACE SCIENCE, 2018, 455 :171-180
[5]  
Biao W., 2012, P ICEC ICREPEC2012
[6]   Indentation response of two-dimensional materials mounted on different substrates [J].
Cao, Guoxin ;
Liu, Yanwei ;
Niu, Tianxiao .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 137 :96-104
[7]   Low-Resistance Electrical Contact to Carbon Nanotubes With Graphitic Interfacial Layer [J].
Chai, Yang ;
Hazeghi, Arash ;
Takei, Kuniharu ;
Chen, Hong-Yu ;
Chan, Philip C. H. ;
Javey, Ali ;
Wong, H. -S. Philip .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (01) :12-19
[8]   Impact of the contact's geometry on the line resistivity of carbon nanotubes bundles for applications as horizontal interconnects [J].
Chiodarelli, N. ;
Fournier, A. ;
Dijon, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[9]   Resistive switching and impedance properties of soft nanocomposites based on Ag nanoparticles [J].
Chiolerio, A. ;
Roppolo, I. ;
Perrone, D. ;
Sacco, A. ;
Rajan, K. ;
Chiappone, A. ;
Bocchini, S. ;
Bejtka, K. ;
Ricciardi, C. ;
Pirri, C. F. .
APPLIED SURFACE SCIENCE, 2017, 424 :352-358
[10]   A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes [J].
de Pablo, PJ ;
Graugnard, E ;
Walsh, B ;
Andres, RP ;
Datta, S ;
Reifenberger, R .
APPLIED PHYSICS LETTERS, 1999, 74 (02) :323-325