Local time and the pricing of time-dependent barrier options

被引:14
作者
Mijatovic, Aleksandar [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
Time-dependent single- and double-barrier options; Local time on curves; Volterra integral equation of the first kind; Delta at the barrier; OF-VARIABLE FORMULA; BUBBLES;
D O I
10.1007/s00780-008-0077-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
A time-dependent double-barrier option is a derivative security that delivers the terminal value phi(S (T) ) at expiry T if neither of the continuous time-dependent barriers b (+/-):[0,T]-> a"e(+) have been hit during the time interval [0,T]. Using a probabilistic approach, we obtain a decomposition of the barrier option price into the corresponding European option price minus the barrier premium for a wide class of payoff functions phi, barrier functions b (+/-) and linear diffusions (S (t) ) (ta[0,T]). We show that the barrier premium can be expressed as a sum of integrals along the barriers b (+/-) of the option's deltas Delta (+/-):[0,T]-> a"e at the barriers and that the pair of functions (Delta (+),Delta (-)) solves a system of Volterra integral equations of the first kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly discus a numerical algorithm for the time-dependent case.
引用
收藏
页码:13 / 48
页数:36
相关论文
共 41 条
[21]  
Geman H., 1996, MATH FINANC, V6, P365
[22]  
HUI CH, 2004, FINANC STOCH, V4, P105
[23]  
Jacka S., 1991, MATH FINANC, V1, P1, DOI [10.1111/j.1467-9965.1991.tb00007.x, DOI 10.1111/J.1467-9965.1991.TB00007.X]
[24]  
JAMSHIDIAN F, 2000, VOLATILITY MODELLING
[25]  
Jarrow RA, 2007, APPL NUMER HARMON AN, P97, DOI 10.1007/978-0-8176-4545-8_7
[26]  
JEANNIN M, 2007, TRANSFORM APPROACH C
[27]  
Kraft H., 2007, FINANC RES LETT, V4, P2
[28]  
Kunitomo N., 1992, MATH FINANC, V2, P275, DOI DOI 10.1111/J.1467-9965.1992.TB00033.X
[29]  
LANGLOIS P, 2005, P 17 IMACS WORLD C P
[30]  
Lipton A, 2001, MATH METHODS FOREIGN