Local time and the pricing of time-dependent barrier options

被引:14
作者
Mijatovic, Aleksandar [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
关键词
Time-dependent single- and double-barrier options; Local time on curves; Volterra integral equation of the first kind; Delta at the barrier; OF-VARIABLE FORMULA; BUBBLES;
D O I
10.1007/s00780-008-0077-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
A time-dependent double-barrier option is a derivative security that delivers the terminal value phi(S (T) ) at expiry T if neither of the continuous time-dependent barriers b (+/-):[0,T]-> a"e(+) have been hit during the time interval [0,T]. Using a probabilistic approach, we obtain a decomposition of the barrier option price into the corresponding European option price minus the barrier premium for a wide class of payoff functions phi, barrier functions b (+/-) and linear diffusions (S (t) ) (ta[0,T]). We show that the barrier premium can be expressed as a sum of integrals along the barriers b (+/-) of the option's deltas Delta (+/-):[0,T]-> a"e at the barriers and that the pair of functions (Delta (+),Delta (-)) solves a system of Volterra integral equations of the first kind. We find a semi-analytic solution for this system in the case of constant double barriers and briefly discus a numerical algorithm for the time-dependent case.
引用
收藏
页码:13 / 48
页数:36
相关论文
共 41 条
[1]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[2]  
Anderson Gail D, 2002, J Gend Specif Med, V5, P25
[3]  
[Anonymous], 1992, The Annals of Applied Probability, DOI DOI 10.1111/J.1467-9965.1992.TB00040.X
[4]  
[Anonymous], 1974, Diffusion Processes.
[5]  
[Anonymous], 1998, GRADUATE TEXTS MATH
[6]  
[Anonymous], 1998, HDB INTEGRAL EQUATIO
[7]  
[Anonymous], 2006, Stochastic Differential Equations and Applications
[8]   Robust hedging of barrier options [J].
Brown, H ;
Hobson, D ;
Rogers, LCG .
MATHEMATICAL FINANCE, 2001, 11 (03) :285-314
[9]   Static hedging of exotic options [J].
Carr, P ;
Ellis, K ;
Gupta, V .
JOURNAL OF FINANCE, 1998, 53 (03) :1165-1190
[10]  
Carr P., 2002, Hedging complex barrier options