A software framework for construction of process-based stochastic spatio-temporal models and data assimilation

被引:144
作者
Karssenberg, Derek [1 ]
Schmitz, Oliver [1 ]
Salamon, Peter [2 ]
de Jong, Kor [1 ]
Bierkens, Marc F. P. [1 ,3 ]
机构
[1] Univ Utrecht, Dept Phys Geog, Fac Geosci, NL-3508 TC Utrecht, Netherlands
[2] European Commiss, Land Management & Nat Hazards Unit, Inst Environm & Sustainabil, DG Joint Res Ctr, I-21027 Ispra, Va, Italy
[3] Deltares, Unit Soil & Groundwater, NL-3508 TA Utrecht, Netherlands
关键词
Data assimilation; Particle filter; Ensemble kalman filter; Hydrology; PCRaster; !text type='Python']Python[!/text; Snow; Environmental model; Calibration; Spatio-temporal model; SURFACE AIR-TEMPERATURE; SIMULATION; SYSTEM; FILTER; GIS;
D O I
10.1016/j.envsoft.2009.10.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Process-based spatio-temporal models simulate changes over time using equations that represent real world processes. They are widely applied in geography and earth science. Software implementation of the model itself and integrating model results with observations through data assimilation are two important steps in the model development cycle. Unlike most software frameworks that provide tools for either implementation of the model or data assimilation, this paper describes a software framework that integrates both steps. The software framework includes generic operations on 2D map and 3D block data that can be combined in a Python script using a framework for time iterations and Monte Carlo simulation. In addition, the framework contains components for data assimilation with the Ensemble Kalman Filter and the Particle filter. Two case studies of distributed hydrological models show how the framework integrates model construction and data assimilation. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:489 / 502
页数:14
相关论文
共 63 条
[1]   An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction [J].
Ajami, Newsha K. ;
Duan, Qingyun ;
Sorooshian, Soroosh .
WATER RESOURCES RESEARCH, 2007, 43 (01)
[2]  
Benenson I., 2004, Geosimulation-Automata-based modeling of urban phenomena
[3]  
Beven K.J., 2002, Rainfall-runoff modelling, the Primer
[4]   Seasonal and synoptic variations in near-surface air temperature lapse rates in a mountainous basin [J].
Blandford, Troy R. ;
Humes, Karen S. ;
Harshburger, Brian J. ;
Moore, Brandon C. ;
Walden, Von P. ;
Ye, Hengchun .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (01) :249-261
[5]   A spatially distributed flash flood forecasting model [J].
Bloeschl, Gunter ;
Reszler, Christian ;
Komma, Jurgen .
ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (04) :464-478
[6]   Individual-based models in the analysis of disease transmission in plant production chains: An application to potato brown rot [J].
Breukers, Annemarie ;
Kettenis, Dirk L. ;
Mourits, Monique ;
van der Werf, Wopke ;
Lansink, Alfons Oude .
AGRICULTURAL SYSTEMS, 2006, 90 (1-3) :112-131
[7]   Using satellite imagery to validate snow distribution simulated by a hydrological model in large northern basins [J].
Brown, Laura ;
Thorne, Robin ;
Woo, Ming-Ko .
HYDROLOGICAL PROCESSES, 2008, 22 (15) :2777-2787
[8]  
Burrough P.A., 1998, PRINCIPLES GEOGRAPHI
[9]  
Burrough PeterA., 1998, Geocomputation: A Primer, P165
[10]   An improved state-parameter analysis of ecosystem models using data assimilation [J].
Chen, M. ;
Liu, S. ;
Tieszen, L. L. ;
Hollinger, D. Y. .
ECOLOGICAL MODELLING, 2008, 219 (3-4) :317-326