Energy conditions in non-minimally coupled f(R, T) gravity

被引:29
作者
Sahoo, Pradyumn Kumar [1 ]
Mandal, Sanjay [1 ]
Arora, Simran [1 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, India
关键词
cosmological parameters; cosmology; observations; theory; large-scale structure; F R;
D O I
10.1002/asna.202113886
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In today's scenario, going beyond Einstein's theory of gravity leads us to some more complete and modified gravity theories. One of them is the f(R, T) gravity in which R is the Ricci scalar, and T is the trace of the energy-momentum tensor. Using a well-motivated linear f(R, T) gravity model with a single parameter, we studied the strong energy condition (SEC), the weak energy condition (WEC), the null energy condition (NEC), and the dominant energy condition (DEC) under the simplest non-minimal matter geometry coupling with a perfect fluid distribution. The model parameter is constrained by energy conditions and a single-parameter proposed equation of state (EoS), resulting in the compatibility of the f(R, T) models with the accelerated expansion of the universe. It is seen that the EoS parameter illustrates the quintessence phase in a dominated accelerated phase, pinpoint to the cosmological constant yields as a prediction the phantom era. Also, the present values of the cosmological constant and the acceleration of the universe are used to check the viability of our linear f(R, T) model of gravity. It is observed that the positive behavior of DEC and WEC indicates the validation of the model. In contrast, SEC is violating the condition resulting in the accelerated expansion of the universe.
引用
收藏
页码:89 / 95
页数:7
相关论文
共 28 条
[1]   Planck 2018 results: XII. Galactic astrophysics using polarized dust emission [J].
Aghanim, N. ;
Akrami, Y. ;
Alves, M. I. R. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bracco, A. ;
Bucher, M. ;
Burigana, C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Chary, R. -R. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Dickinson, C. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Falgarone, E. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]   Dynamics of scalar perturbations in f(R, T) gravity [J].
Alvarenga, F. G. ;
de la Cruz-Dombriz, A. ;
Houndjo, M. J. S. ;
Rodrigues, M. E. ;
Saez-Gomez, D. .
PHYSICAL REVIEW D, 2013, 87 (10)
[3]  
Arora S., 2021, ASTRON NACHR, P1
[4]  
Atazadeh K, 2014, GEN RELAT GRAVIT, V46, DOI 10.1007/s10714-014-1664-8
[5]   Energy conditions in modified f(G) gravity [J].
Bamba, Kazuharu ;
Ilyas, M. ;
Bhatti, M. Z. ;
Yousaf, Z. .
GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (08)
[6]   The role of energy conditions in f(R) cosmology [J].
Capozziello, S. ;
Nojiri, S. ;
Odintsov, S. D. .
PHYSICS LETTERS B, 2018, 781 :99-106
[7]   Extended gravity cosmography [J].
Capozziello, Salvatore ;
D'Agostino, Rocco ;
Luongo, Orlando .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2019, 28 (10)
[8]  
Carroll S., 2019, Spacetime and Geometry: An Introduction to General Relativity
[9]   A. K. Raychaudhuri and his equation [J].
Ehlers, J. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (10) :1573-1580
[10]   Modified teleparallel gravity: Inflation without an inflaton [J].
Ferraro, Rafael ;
Fiorini, Franco .
PHYSICAL REVIEW D, 2007, 75 (08)