A note on asymptotic integration of second order nonlinear differential equations

被引:0
作者
Mustafa, Octavian G.
Rogovchenko, Yuri V.
机构
[1] Univ Craiova, Dept Math, Craiova, Romania
[2] Eastern Mediterranean Univ Famagusta, Dept Math, TRNC, Mersin 10, Turkey
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2006年 / 12卷 / 02期
关键词
nonlinear differential equation; asymptotic integration; asymptotic expansion; fixed point theory;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is concerned with the asymptotic behavior of solutions to a second order nonlinear differential equation u" + f(t, u) = 0. Using the Banach contraction principle, we establish global existence of solutions which satisfy u(t) = At + o(t(nu)) as t --> +infinity, where A is an element of R and nu is an element of (0, 1].
引用
收藏
页码:205 / 211
页数:7
相关论文
共 22 条
[1]  
[Anonymous], ANN POL MATH
[2]  
[Anonymous], ELECT J DIFFER EQU
[3]   Positive solutions of quasilinear elliptic equations in two-dimensional exterior domains [J].
Constantin, A ;
Villari, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (02) :243-250
[4]  
CONSTANTIN A, 1993, REND MAT APPL, V7, P627
[5]  
Hale JK., 1963, CONTRIBUTIONS DIFFER, V2, P61
[6]   On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations [J].
Lipovan, O .
GLASGOW MATHEMATICAL JOURNAL, 2003, 45 :179-187
[7]   On the existence of positive solutions of a singular nonlinear differential equation [J].
Masmoudi, S ;
Yazidi, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :53-66
[8]   On the existence of solutions with prescribed asymptotic behaviour for perturbed nonlinear differential equations of second order [J].
Mustafa, Octavian G. .
GLASGOW MATHEMATICAL JOURNAL, 2005, 47 :177-185
[9]   Global Existence and Asymptotic Behavior of Solutions of Nonlinear Differential Equations [J].
Mustafa, Octavian G. ;
Rogovchenko, Yuri V. .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (02) :167-186
[10]   Positive solutions of nonlinear differential equations with prescribed decay of the first derivative [J].
Mustafa, OG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (01) :179-185