Deep Spatial-Temporal Fusion network for Fine-grained Air Quality Prediction

被引:1
|
作者
Ge, Liang [1 ]
Zhou, Aoli [1 ]
Li, Hang [1 ]
Liu, Junling [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing, Peoples R China
来源
2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019) | 2019年
关键词
Air quality; Prediction; LSTM; Embedding; Tensor decomposes;
D O I
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The prediction of spatially fine-grained air quality is an important direction in urban air computing. Solving the problem can provide useful information for urban environmental governance and residents' health improvement. This paper proposes a general approach to solve the problem, which consists of data completion component, similar region selection component, and a deep spatial-temporal fusion network(DSTFN). Considering the missing of historical air quality data, the tensor decomposition method is used in the data completion component. Considering the similarity of air quality between urban regions, the similar region selection component uses heterogeneous data to calculate the spatial similarity between regions. The deep spatial-temporal fusion network fuse urban heterogeneous data to predict air quality for simultaneously capturing the affecting factors. We evaluated our approach on real data sources obtained in Beijing, and the experimental results show its advantages over baseline methods.
引用
收藏
页码:536 / 543
页数:8
相关论文
共 50 条
  • [1] Deep spatial-temporal fusion network for fine-grained air pollutant concentration prediction
    Ge, Liang
    Wu, Kunyan
    Chang, Feng
    Zhou, Aoli
    Li, Hang
    Liu, Junling
    INTELLIGENT DATA ANALYSIS, 2021, 25 (02) : 419 - 438
  • [2] A Spatial-temporal Causal Convolution Model for Fine-grained Individual Air Quality Index (IAQI) Prediction
    Zhang Y.
    Zhao J.
    Mei Q.
    Liu X.
    Chen Z.
    Li J.
    Wang S.
    Shi Y.
    Chai J.
    Gao Y.
    Jing X.
    Yang N.
    Ma X.
    Journal of Geo-Information Science, 2023, 25 (01): : 115 - 130
  • [3] Supreme: Fine-grained Radio Map Reconstruction via Spatial-Temporal Fusion Network
    Li, Kehan
    Chen, Jiming
    Yu, Baosheng
    Shen, Zhangchong
    Li, Chao
    He, Shibo
    2020 19TH ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2020), 2020, : 1 - 12
  • [4] Fine-Grained Individual Air Quality Index (IAQI) Prediction Based on Spatial-Temporal Causal Convolution Network: A Case Study of Shanghai
    Liu, Xiliang
    Zhao, Junjie
    Lin, Shaofu
    Li, Jianqiang
    Wang, Shaohua
    Zhang, Yumin
    Gao, Yuyao
    Chai, Jinchuan
    ATMOSPHERE, 2022, 13 (06)
  • [5] FGST: Fine-Grained Spatial-Temporal Based Regression for Stationless Bike Traffic Prediction
    Chen, Hao
    Wang, Senzhang
    Deng, Zengde
    Zhang, Xiaoming
    Li, Zhoujun
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 265 - 279
  • [6] Forecasting Fine-Grained Air Quality for Locations without Monitoring Stations Based on a Hybrid Predictor with Spatial-Temporal Attention Based Network
    Hsieh, Hsun-Ping
    Wu, Su
    Ko, Ching-Chung
    Shei, Chris
    Yao, Zheng-Ting
    Chen, Yu-Wen
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [7] A Spatial-Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM2.5 Concentration Prediction
    Lin, Shaofu
    Zhao, Junjie
    Li, Jianqiang
    Liu, Xiliang
    Zhang, Yumin
    Wang, Shaohua
    Mei, Qiang
    Chen, Zhuodong
    Gao, Yuyao
    ENTROPY, 2022, 24 (08)
  • [8] A Fine-Grained Spatial-Temporal Attention Model for Video Captioning
    Liu, An-An
    Qiu, Yurui
    Wong, Yongkang
    Su, Yu-Ting
    Kankanhalli, Mohan
    IEEE ACCESS, 2018, 6 : 68463 - 68471
  • [9] A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction
    Wang, Junshan
    Song, Guojie
    NEUROCOMPUTING, 2018, 314 : 198 - 206
  • [10] Spatial-Temporal Contrasting for Fine-Grained Urban Flow Inference
    Xu, Xovee
    Wang, Zhiyuan
    Gao, Qiang
    Zhong, Ting
    Hui, Bei
    Zhou, Fan
    Trajcevski, Goce
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) : 1711 - 1725