Some new formulations of smoothness conditions and conformality conditions for bivariate splines

被引:19
作者
Hong, D [1 ]
Liu, HW
机构
[1] E Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[2] Univ Wollongong, Dept Math, Wollongong, NSW 2522, Australia
[3] Guangxi Inst Nationalities, Dept Math, Nanning 530006, Guangxi, Peoples R China
关键词
B-net representation; multivariate splines; bivariate cubic splines; smoothness conditions; conformality conditions;
D O I
10.1016/S0898-1221(00)00145-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a study of some new formulations of smoothness conditions and conformality conditions for multivariate splines in terms of B-net representation. In bivariate setting, a group of new parameters of bivariate cubic polynomials over a planar simplex is introduced, and smoothness conditions and conformality conditions of bivariate cubic C-1 splines are simplified. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:117 / 125
页数:9
相关论文
共 18 条
[1]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[2]  
Chui C.K., 1988, CBMS SERIES APPL MAT, V54
[3]   Swapping edges of arbitrary triangulations to achieve the optimal order of approximation [J].
Chui, CK ;
Hong, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1472-1482
[4]   Construction of local C-1 quartic spline elements for optimal-order approximation [J].
Chui, CK ;
Hong, D .
MATHEMATICS OF COMPUTATION, 1996, 65 (213) :85-98
[5]   STABILITY OF OPTIMAL-ORDER APPROXIMATION BY BIVARIATE SPLINES OVER ARBITRARY TRIANGULATIONS [J].
CHUI, CK ;
HONG, D ;
JIA, RQ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3301-3318
[6]  
DEBOOR C, 1987, GEOMETRIC MODELING, P21
[7]  
Farin G, 2014, Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide
[8]  
FARIN G, 1986, COMPUT AIDED GEOM D, V3, P87
[9]  
Farin G., 1980, TR91 BRUN U
[10]  
GUO ZR, 1990, ADV MATH, V19, P189