Understanding flexural, mechanical and physicochemical properties of gas diffusion layers for polymer membrane fuel cell and electrolyzer systems

被引:17
作者
Dhanushkodi, S. R. [1 ,2 ]
Capitanio, F. [1 ,2 ,3 ]
Biggs, T. [3 ]
Merida, W. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V6T 1Z4, Canada
[3] Mercedes Benz Canada Inc, Fuel Cell Div, Burnaby, BC V5J 5K7, Canada
关键词
PEM (polymer electrolyte membrane) fuel cells; GDLs; Flexural properties; Mechanical strength; Fiber orientation; EFFECTIVE THERMAL-CONDUCTIVITY; LIQUID WATER TRANSPORT; ELECTRICAL CONTACT RESISTANCE; MICRO-POROUS LAYER; MICROPOROUS LAYER; BIPOLAR PLATE; MASS-TRANSPORT; CARBON CLOTH; PERFORMANCE; PEMFC;
D O I
10.1016/j.ijhydene.2015.07.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Structural variations in the Gas Diffusion Layer (GDL) can affect material functionalities and performance of the polymer electrolyte and fuel cell power systems. The selection of GDLs depends on their structure, physico-chemical and mechanical properties. The flexural and mechanical properties of different fuel cell GDL materials are reviewed with a focus on synthesis constraints. Emphasis is placed on mechanical degradation and mechanical analysis methods of the GDL. The change of physico-chemical properties is discussed in relation with the fiber orientation, bending behaviour, Teflon dispersion and the compression force. Based on our review, we recommend roll-good GDLs for the fuel cell stack production. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:16846 / 16859
页数:14
相关论文
共 114 条
[91]   Improvement of water management by a microporous sublayer for PEM fuel cells [J].
Qi, ZG ;
Kaufman, A .
JOURNAL OF POWER SOURCES, 2002, 109 (01) :38-46
[92]   Effect of cyclic compression on structure and properties of a Gas Diffusion Layer used in PEM fuel cells [J].
Radhakrishnan, Vijay ;
Haridoss, Prathap .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (20) :11107-11118
[93]  
Ramamrutham S, 1999, ELEMENTS STRENGTH MA
[94]   Estimation of the effective thermal conductivity of carbon felts used as PEMFC Gas Diffusion Layers [J].
Ramousse, Julien ;
Didierjean, Sophie ;
Lottin, Olivier ;
Maillet, Denis .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2008, 47 (01) :1-6
[95]   A method for measuring in-plane effective diffusivity in thin porous media [J].
Rashapov, Rinat ;
Imami, Fariha ;
Gostick, Jeff T. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 85 :367-374
[96]   Characterization of PEMFC Gas Diffusion Layer Porosity [J].
Rashapov, Rinat R. ;
Unno, Jonathan ;
Gostick, Jeff T. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :F603-F612
[97]   Effective bending stiffness of carbon nanotubes [J].
Ru, CQ .
PHYSICAL REVIEW B, 2000, 62 (15) :9973-9976
[98]   Analytic determination of the effective thermal conductivity of PEM fuel cell gas diffusion layers [J].
Sadeghi, E. ;
Bahrami, M. ;
Djilali, N. .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :200-208
[99]   Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1: Effect of compressive load [J].
Sadeghi, E. ;
Djilali, N. ;
Bahrami, M. .
JOURNAL OF POWER SOURCES, 2011, 196 (01) :246-254
[100]   An Approach to Measure the Water Breakthrough in Porous Carbon Materials [J].
Schwager, M. ;
Dhanushkodi, S. R. ;
Merida, W. .
ECS ELECTROCHEMISTRY LETTERS, 2015, 4 (04) :F32-F34