Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd)

被引:23
作者
McGinty, Emma M. [1 ]
Murphy, Kevin M. [2 ]
Hauvermale, Amber L. [2 ]
机构
[1] Washington State Univ, Sch Biol Sci, POB 644236, Pullman, WA 99164 USA
[2] Washington State Univ, Dept Crop & Soil Sci, Pullman, WA 99164 USA
来源
PLANTS-BASEL | 2021年 / 10卷 / 03期
关键词
abscisic acid; desiccation sensitivity; gibberellin; hormone signaling; precocious germination; seed morphology; ABSCISIC-ACID ABA; GRAIN DORMANCY; GERMINATION INHIBITION; SALINITY STRESS; HEXAPLOID WHEAT; BREAD WHEAT; ARABIDOPSIS; SENSITIVITY; GROWTH; LIGHT;
D O I
10.3390/plants10030458
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Quinoa (Chenopodium quinoa Willd.) is a culturally significant staple food source that has been grown for thousands of years in South America. Due to its natural drought and salinity tolerance, quinoa has emerged as an agronomically important crop for production in marginal soils, in highly variable climates, and as part of diverse crop rotations. Primary areas of quinoa research have focused on improving resistance to abiotic stresses and disease, improving yields, and increasing nutrition. However, an evolving issue impacting quinoa seed end-use quality is preharvest sprouting (PHS), which is when seeds with little to no dormancy experience a rain event prior to harvest and sprout on the panicle. Far less is understood about the mechanisms that regulate quinoa seed dormancy and seed viability. This review will cover topics including seed dormancy, orthodox and unorthodox dormancy programs, desiccation sensitivity, environmental and hormonal mechanisms that regulate seed dormancy, and breeding and non-breeding strategies for enhancing resistance to PHS in quinoa.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 91 条
[1]   Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) [J].
Adolf, Verena Isabelle ;
Jacobsen, Sven-Erik ;
Shabala, Sergey .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 :43-54
[2]   The wheat transcriptional activator SPA: A seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes [J].
Albani, D ;
HammondKosack, MCU ;
Smith, C ;
Conlan, S ;
Colot, V ;
Holdsworth, M ;
Bevan, MW .
PLANT CELL, 1997, 9 (02) :171-184
[3]   ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination [J].
Arc, Erwann ;
Sechet, Julien ;
Corbineau, Francoise ;
Rajjou, Loic ;
Marion-Poll, Annie .
FRONTIERS IN PLANT SCIENCE, 2013, 4
[4]   Lifting DELLA Repression of Arabidopsis Seed Germination by Nonproteolytic Gibberellin Signaling [J].
Ariizumi, Tohru ;
Hauvermale, Amber L. ;
Nelson, Sven K. ;
Hanada, Atsushi ;
Yamaguchi, Shinjiro ;
Steber, Camille M. .
PLANT PHYSIOLOGY, 2013, 162 (04) :2125-2139
[5]  
ARNOLD RLB, 1991, NEW PHYTOL, V118, P339, DOI 10.1111/j.1469-8137.1991.tb00986.x
[6]   Active oxygen species and antioxidants in seed biology [J].
Bailly, C .
SEED SCIENCE RESEARCH, 2004, 14 (02) :93-107
[7]  
Baker H. G., 1965, The genetics of colonizing species: Proc. 1st Internat. Union biol Sci., Asilomar, California., P147
[8]   A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination [J].
Barrero, Jose M. ;
Downie, A. Bruce ;
Xu, Qian ;
Gubler, Frank .
PLANT CELL, 2014, 26 (03) :1094-1104
[9]   Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon [J].
Barrero, Jose M. ;
Jacobsen, John V. ;
Talbot, Mark J. ;
White, Rosemary G. ;
Swain, Stephen M. ;
Garvin, David F. ;
Gubler, Frank .
NEW PHYTOLOGIST, 2012, 193 (02) :376-386
[10]   Anatomical and Transcriptomic Studies of the Coleorhiza Reveal the Importance of This Tissue in Regulating Dormancy in Barley [J].
Barrero, Jose M. ;
Talbot, Mark J. ;
White, Rosemary G. ;
Jacobsen, John V. ;
Gubler, Frank .
PLANT PHYSIOLOGY, 2009, 150 (02) :1006-1021