Extreme limit distribution of truncated models for daily rainfall

被引:5
作者
Hernandez, Aracelis [2 ]
Guenni, Lelys [1 ]
Sanso, Bruno [3 ]
机构
[1] Univ Simon Bolivar, Ctr Estadist & Software Matemat, Caracas 1080A, Venezuela
[2] Univ Carabobo, Fac Expt Ciencias & Tecnol, Naguanagua, Valencia, Venezuela
[3] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
GEV distributions; Frechet family; truncated models; daily rainfall; POINT PROCESS MODEL; STATISTICS;
D O I
10.1002/env.967
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We propose truncated and power-transformed (TPT) models for daily rainfall and we derive the generalized extreme value (GEV) limit distributions for these models. We find that these limit distributions belong to the domain of attraction of the Frechet family when the parent distribution of the daily values is a TPT t-Student model. In this case, the shape parameter of the limiting GEV model depends on the degrees of freedom and the power transformation parameter. When the parent distribution of the daily values is a TPT Normal model, the limiting GEV model is independent of the parameters of the parent model. We perform a detailed inference and predictive analysis to verify these theoretical results using a Bayesian approach. Markov Chain Monte Carlo methods (MCMC) were used to estimate the posterior distribution of the parameters of the t-Student model for daily rainfall on one hand, and to estimate the posterior distribution of the parameters of the GEV model for the annual maxima on the other hand. Numerical results are presented for two locations: Maiquetia (Vargas State), and La Mariposa (Miranda State), Venezuela. Simulations from the predictive distribution of the daily values suggest a good approximation between the extreme distribution of the TPT t-Student model and the Frechet model found by standard extreme value limit theory. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:962 / 980
页数:19
相关论文
共 37 条
[1]   A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation [J].
Allcroft, DJ ;
Glasbey, CA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2003, 52 :487-498
[2]   SPACE-TIME MODEL FOR DAILY RAINFALL USING ATMOSPHERIC CIRCULATION PATTERNS [J].
BARDOSSY, A ;
PLATE, EJ .
WATER RESOURCES RESEARCH, 1992, 28 (05) :1247-1259
[3]  
Coles G.S., 2001, An introduction to statistical modeling of extreme values, DOI DOI 10.1007/978-1-4471-3675-0
[4]   Anticipating catastrophes through extreme value modelling [J].
Coles, S ;
Pericchi, L .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2003, 52 :405-416
[5]   A GENERALIZED POINT PROCESS MODEL FOR RAINFALL [J].
COWPERTWAIT, PSP .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 447 (1929) :23-37
[6]  
COX DR, 1994, STATISTICS FOR THE ENVIRONMENT 2, P3
[7]   A SIMPLE SPATIAL-TEMPORAL MODEL OF RAINFALL [J].
COX, DR ;
ISHAM, V .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 415 (1849) :317-328
[8]   3 MULTIDIMENSIONAL-INTEGRAL IDENTITIES WITH BAYESIAN APPLICATIONS [J].
DICKEY, JM .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (05) :1615-&
[9]   A MARKOV CHAIN MODEL FOR DAILY RAINFALL OCCURRENCE AT TEL-AVIV [J].
GABRIEL, KR ;
NEUMANN, J .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1962, 88 (375) :90-95
[10]  
Galambos J., 1978, The Asymptotic Theory of Extreme Order Statistics