Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian

被引:28
作者
Ge, Bin [1 ]
机构
[1] Harbin Engn Univ, Dept Appl Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Laplacian; Infinitely many solutions; Nonlinear Schrodinger equation; EXISTENCE;
D O I
10.1016/j.nonrwa.2016.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are devoted to a time-independent fractional Schrodinger equation (-Delta)(alpha)u + V(x)u = f (x, u) in R-N, where (-Delta)(alpha) stands for the fractional Laplacian of order alpha is an element of (0, 1), f is either asymptotically linear or superquadratic growth. Under appropriate assumptions on V and f, we prove the existence of infinitely many nontrivial high or small energy solutions, which extend and complement previously known results in the literature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 247
页数:12
相关论文
共 17 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Elliptic problems involving the fractional Laplacian in RN [J].
Autuori, Giuseppina ;
Pucci, Patrizia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) :2340-2362
[3]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[4]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[5]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[6]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[7]  
Feng B H., 2013, ELECTRON J DIFFER EQ, V2013, P1
[8]   On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on RN [J].
Jeanjean, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :787-809
[9]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[10]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305