Functional central limit theorems for persistent Betti numbers on cylindrical networks

被引:7
作者
Krebs, Johannes [1 ]
Hirsch, Christian [2 ]
机构
[1] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[2] Aarhus Univ, Dept Math, Aarhus, Denmark
关键词
functional central limit theorems; goodness‐ of‐ fit tests; graphical networks; persistent Betti numbers; stochastic geometry; topological data analysis; MINIMAL SPANNING-TREES; CONVERGENCE;
D O I
10.1111/sjos.12524
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study functional central limit theorems for persistent Betti numbers obtained from networks defined on a Poisson point process. The limit is formed in large volumes of cylindrical shape stretching only in one dimension. The results cover a directed sublevel-filtration for stabilizing networks and the Cech and Vietoris-Rips complex on the random geometric graph. The presented functional central limit theorems open the door to a variety of statistical applications in topological data analysis and we consider goodness-of-fit tests in a simulation study.
引用
收藏
页码:427 / 454
页数:28
相关论文
共 30 条
[1]   The radial spanning tree of a Poisson point process [J].
Baccelli, Francois ;
Bordenave, Charles .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (01) :305-359
[2]   Gaussian limits for random measures in geometric probability [J].
Baryshnikov, Y ;
Yukich, JE .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A) :213-253
[3]   PERSISTENT HOMOLOGY ANALYSIS OF BRAIN ARTERY TREES [J].
Bendich, Paul ;
Marron, J. S. ;
Miller, Ezra ;
Pieloch, Alex ;
Skwerer, Sean .
ANNALS OF APPLIED STATISTICS, 2016, 10 (01) :198-218
[4]   CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS [J].
BICKEL, PJ ;
WICHURA, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1656-&
[5]  
Billingsley P., 2013, Convergence of Probability Measures
[6]   Testing goodness of fit for point processes via topological data analysis [J].
Biscio, Christophe A. N. ;
Chenavier, Nicolas ;
Hirsch, Christian ;
Svane, Anne Marie .
ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01) :1024-1074
[7]   The Accumulated Persistence Function, a New Useful Functional Summary Statistic for Topological Data Analysis, With a View to Brain Artery Trees and Spatial Point Process Applications [J].
Biscio, Christophe A. N. ;
Moller, Jesper .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) :671-681
[8]   LIMIT THEORY FOR GEOMETRIC STATISTICS OF POINT PROCESSES HAVING FAST DECAY OF CORRELATIONS [J].
Blaszczyszyn, B. ;
Yogeshwaran, D. ;
Yukich, J. E. .
ANNALS OF PROBABILITY, 2019, 47 (02) :835-895
[9]   The 2D-directed spanning forest is almost surely a tree [J].
Coupier, David ;
Viet Chi Tran .
RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (01) :59-72
[10]   On weak convergence of random fields [J].
Davydov, Youri ;
Zitikis, Ricardas .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2008, 60 (02) :345-365