Quadri-tilings of the plane

被引:16
作者
de Tiliere, Beatrice [1 ]
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
D O I
10.1007/s00440-006-0002-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce quadri-tilings and show that they are in bijection with dimer models on a family of graphs {R*} arising from rhombus tilings. Using two height functions, we interpret a sub-family of all quadri-tilings, called triangular quadri-tilings, as an interface model in dimension 2+2. Assigning "critical" weights to edges of R*, we prove an explicit expression, only depending on the local geometry of the graph R*, for the minimal free energy per fundamental domain Gibbs measure; this solves a conjecture of Kenyon (Invent Math 150:409-439, 2002). We also show that when edges of R* are asymptotically far apart, the probability of their occurrence only depends on this set of edges. Finally, we give an expression for a Gibbs measure on the set of all triangular quadri-tilings whose marginals are the above Gibbs measures, and conjecture it to be that of minimal free energy per fundamental domain.
引用
收藏
页码:487 / 518
页数:32
相关论文
共 18 条
[1]  
BILLINGSLEY P, 1986, PROBABILITY THEORY
[2]   A variational principle for domino tilings [J].
Cohn, H ;
Kenyon, R ;
Propp, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :297-346
[3]  
Elkies N., 1992, J. Algebraic Combin., V1, P111, DOI [10.1023/A:1022420103267, DOI 10.1023/A:1022420103267]
[4]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+
[5]  
Kasteleyn P., 1967, Graph Theory and Theoretical Physics, P1
[6]   Rhombic embeddings of planar quad-graphs [J].
Kenyon, R ;
Schlenker, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (09) :3443-3458
[7]   Local statistics of lattice dimers [J].
Kenyon, R .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (05) :591-618
[8]   The Laplacian and Dirac operators on critical planar graphs [J].
Kenyon, R .
INVENTIONES MATHEMATICAE, 2002, 150 (02) :409-439
[9]  
KENYON R, 2006, IN PRESS DUKE MATH J
[10]  
KENYON R, 2006, IN PRESS ANN MATH