Radial basis function interpolation in Sobolev spaces and its applications

被引:0
作者
Zhang, Manping [1 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Inst Computat Math, Beijing 100080, Peoples R China
关键词
Sobolev space; radial basis function; global data density; meshless method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the method of interpolation by radial basis functions and give some error estimates in Sobolev space H-k(Omega) (k >= 1). With a special kind of radial basis function, we construct a basis in H-k (Omega) and derive a meshless method for solving elliptic partial differential equations. We also propose a method for computing the global data density.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 12 条
[1]  
Brenner SC., 1998, MATH THEORY FINITE E
[2]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[3]   LATTICES ADMITTING UNIQUE LAGRANGE INTERPOLATIONS [J].
CHUNG, KC ;
YAO, TH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :735-743
[4]  
Gilbarg D., 2001, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-61798-0
[5]  
Madych W.R., 1988, Approx. Theory Appl, V4, P77, DOI [10.1090/S0025-5718-1990-0993931-7, DOI 10.1090/S0025-5718-1990-0993931-7]
[6]   INTERPOLATION OF SCATTERED DATA - DISTANCE MATRICES AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
MICCHELLI, CA .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (01) :11-22
[7]  
Schaback R., 2001, Multivariate Approximation and Applications, P1
[8]  
SCOTT LR, 1990, MATH COMPUT, V54, P483, DOI 10.1090/S0025-5718-1990-1011446-7
[9]   Meshless Galerkin methods using radial basis functions [J].
Wendland, H .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1521-1531
[10]  
WU XT, 2004, NATURAL SCI J FUDAN, V43, P292