A transcendence criterion in positive characteristic and applications

被引:2
作者
Yao, Jia-Yan [1 ]
机构
[1] Tsing Hua Univ, Dept Math, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.crma.2006.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we shall present a general transcendence criterion in positive characteristic, which unifies many famous transcendence criteria such as those of L.I. Wade, S.M. Spencer, Jr., B. de Mathan, L. Denis, Y. Hellegouarch, etc. As applications, we shall study the transcendence of two families of functions at nonzero algebraic arguments.
引用
收藏
页码:699 / 704
页数:6
相关论文
共 14 条
[1]  
Allouche J.-P., 1987, Expo. Math., V5, P239
[2]  
ALLOUCHE JP, 1990, SEM THEORIE NOMBRES, V2, P103
[3]   IRRATIONALITY MEASURES AND TRANSCENDENCE IN POSITIVE CHARACTERISTIC [J].
DEMATHAN, B .
JOURNAL OF NUMBER THEORY, 1995, 54 (01) :93-112
[4]   Criterion of transcendence in finite characteristic [J].
Denis, L .
JOURNAL OF ALGEBRA, 1996, 182 (02) :522-533
[5]  
HELLEGOUARCH Y, 1995, CR ACAD SCI I-MATH, V321, P677
[6]   Continued-fraction expansion of the Baum-Sweet series [J].
Mkaouar, M .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1995, 123 (03) :361-374
[7]  
SPENCER SM, 1952, DUKE MATH J, V19, P93
[8]  
WADE LI, 1941, DUKE MATH J, V8, P701
[9]  
Yao JY, 1997, ACTA ARITH, V80, P237
[10]   Some transcendental functions over function fields with positive characteristic [J].
Yao, JY .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (11) :939-943