On the perturbation of the reduced minimum modulus of bounded linear operators

被引:6
作者
Ding, J [1 ]
机构
[1] Univ So Mississippi, Dept Math, Hattiesburg, MS 39406 USA
关键词
banach space; operators; reduced minimum modulus; perturbation;
D O I
10.1016/S0096-3003(02)00195-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X and Y be two Banach spaces, and let T : X --> Y be a bounded linear operator. We study the perturbation problem of the reduced minimum modulus of T, and in particular we correct a mistake in a recent paper. (C) 2002 Published by Elsevier Science Inc.
引用
收藏
页码:69 / 75
页数:7
相关论文
共 10 条
[1]  
CAMPBELL S. L., 1979, Generalized inverses of linear transformations
[2]  
CHEN G, 1998, CHIN J CONT MATH, V19, P245
[3]   Perturbation analysis for the operator equation Tx=b in Banach spaces [J].
Chen, GL ;
Xue, YF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (01) :107-125
[4]   Perturbation analysis of the least squares solution in Hilbert spaces [J].
Chen, GL ;
Wei, MS ;
Xue, YF .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 244 :69-80
[5]  
Ding J, 1997, LINEAR ALGEBRA APPL, V262, P229
[6]   Perturbation of generalized inverses of linear operators in Hilbert spaces [J].
Ding, J ;
Huang, LJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (02) :506-515
[7]   ON THE PERTURBATION OF THE LEAST-SQUARES SOLUTIONS IN HILBERT-SPACES [J].
DING, J ;
HUANG, LJ .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 212 :487-500
[8]  
Goldberg S., 1966, Unbounded Linear Operators
[9]  
Kato T., 1984, PERTURBATION THEORY
[10]   Perturbation of least squares problem in Hilbert spaces [J].
Wei, YM ;
Chen, GL .
APPLIED MATHEMATICS AND COMPUTATION, 2001, 121 (2-3) :177-183