Ruthenium catalyzed hydrogen production from formaldehyde-water solution

被引:15
作者
Awasthi, Mahendra Kumar [1 ]
Singh, Sanjay Kumar [1 ]
机构
[1] Indian Inst Technol Indore, Catalysis Grp, Discipline Chem, Indore 453552, Madhya Pradesh, India
关键词
FORMIC-ACID; METHANOL DEHYDROGENATION; CO2; HYDROGENATION; CARBON-DIOXIDE; GENERATION; STORAGE; ENERGY; EFFICIENT; COMPLEX; PARAFORMALDEHYDE;
D O I
10.1039/d0se01330g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To address the global energy demand, intensive efforts have been made to utilize liquid hydrogen storage materials to efficiently store and generate molecular hydrogen. Herein, we report selective production of hydrogen gas from formaldehyde and paraformaldehyde catalyzed by an in situ generated ruthenium imidazole complex under mild reaction conditions in water. This catalytic system involves the production of hydrogen from formaldehyde without the use of a base, which led us to achieve a turnover number of >12 000 in a long-term bulk reaction. Furthermore, mass investigation reveals the presence of several ruthenium imidazole species during the catalytic reaction suggesting the active participation of these species in the generation of hydrogen gas from formaldehyde.
引用
收藏
页码:549 / 555
页数:7
相关论文
共 37 条
[1]   The Hydrogen Issue [J].
Armaroli, Nicola ;
Balzani, Vincenzo .
CHEMSUSCHEM, 2011, 4 (01) :21-36
[2]   Ruthenium Complexes for Catalytic Dehydrogenation of Hydrazine and Transfer Hydrogenation Reactions [J].
Awasthi, Mahendra Kumar ;
Tyagi, Deepika ;
Patra, Soumyadip ;
Rai, Rohit Kumar ;
Mobin, Shaikh M. ;
Singh, Sanjay Kumar .
CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (11) :1424-1431
[3]   Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts [J].
Bernskoetter, Wesley H. ;
Hazari, Nilay .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) :1049-1058
[4]   Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst [J].
Bielinski, Elizabeth A. ;
Foerster, Moritz ;
Zhang, Yuanyuan ;
Bernskoetter, Wesley H. ;
Hazari, Nilay ;
Holthausen, Max C. .
ACS CATALYSIS, 2015, 5 (04) :2404-2415
[5]   HYDROGEN ECONOMY [J].
BOCKRIS, JOM .
SCIENCE, 1972, 176 (4041) :1323-&
[6]   Changing the Mechanism for CO2 Hydrogenation Using Solvent-Dependent Thermodynamics [J].
Burgess, Samantha A. ;
Appel, Aaron M. ;
Linehan, John C. ;
Wiedner, Eric S. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) :15002-15005
[7]   Chemical and Physical Solutions for Hydrogen Storage [J].
Eberle, Ulrich ;
Felderhoff, Michael ;
Schueth, Ferdi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (36) :6608-6630
[8]   Formic Acid as a Hydrogen Energy Carrier [J].
Eppinger, Jorg ;
Huang, Kuo-Wei .
ACS ENERGY LETTERS, 2017, 2 (01) :188-195
[9]   Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions [J].
Fujita, Ken-ichi ;
Kawahara, Ryoko ;
Aikawa, Takuya ;
Yamaguchi, Ryohei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (31) :9057-9060
[10]   Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand [J].
Guan, Chao ;
Zhang, Dan-Dan ;
Pan, Yupeng ;
Iguchi, Masayuki ;
Ajitha, Manjaly J. ;
Hu, Jinsong ;
Li, Huaifeng ;
Yao, Changguang ;
Huang, Mei-Hui ;
Ming, Shixiong ;
Zheng, Junrong ;
Himeda, Yuichiro ;
Kawanami, Hajime ;
Huang, Kuo-Wei .
INORGANIC CHEMISTRY, 2017, 56 (01) :438-445