A Novel and Robust Automatic Seed Point Selection Method for Breast Ultrasound Images

被引:0
作者
Al Mukaddim, Rashid [1 ,2 ]
Shan, Juan [3 ]
Kabir, Irteza Enan [1 ]
Ashik, Abdullah Salmon [1 ]
Abid, Rasheed [1 ]
Yan, Zhennan [4 ]
Metaxas, Dimitris N. [4 ]
Garra, Brian S. [5 ,6 ]
Islam, Kazi Khairul [1 ]
Alam, S. Kaisar [4 ,7 ]
机构
[1] Islamic Univ Technol, Dept Elect & Elect Engn, Gazipur, Bangladesh
[2] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
[3] Pace Univ, Seidenberg Sch CSIS, Comp Sci Dept, New York, NY 10038 USA
[4] Rutgers State Univ, Computat Biomed Imaging & Modeling, Piscataway, NJ USA
[5] US FDA, Silver Spring, MD 20903 USA
[6] Washington DC Vet Affairs Med Ctr, Washington, DC USA
[7] Improlabs Pte Ltd, Singapore, Singapore
来源
2016 INTERNATIONAL CONFERENCE ON MEDICAL ENGINEERING, HEALTH INFORMATICS AND TECHNOLOGY (MEDITEC) | 2016年
关键词
Breast-cancer; Computer-aided diagnosis (CAD); Image-segmentation; Quantitative-ultrasound; Ranking-function; Seed-point; Sonography; Tissue-Characterization; ultrasound; COMPUTER-AIDED DIAGNOSIS; SEGMENTATION METHOD;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate segmentation of breast lesions is among the several challenges in the development of a fully automatic Computer-Aided Diagnosis system for solid breast mass classification. Many high level segmentation methods rely heavily on proper initialization and the seed point selection is usually the necessary first step. In this paper, a fully automatic and robust seed point selection method is proposed. The method involves a number of processing steps in both space and frequency domain and endeavors to incorporate the breast anatomical knowledge. Using a database of 498 images, we compared the proposed method with two other state-of-the-art methods; the proposed method outperforms both methods significantly with a success rate of 62.85% vs. 44.97% and 13.05% on seed point select.
引用
收藏
页数:5
相关论文
共 17 条
[1]   Ultrasonic Multi-Feature Analysis Procedure for Computer-Aided Diagnosis of Solid Breast Lesions [J].
Alam, S. Kaisar ;
Feleppa, Ernest J. ;
Rondeau, Mark ;
Kalisz, Andrew ;
Garra, Brian S. .
ULTRASONIC IMAGING, 2011, 33 (01) :17-38
[2]   Automated breast cancer detection and classification using ultrasound images: A survey [J].
Cheng, H. D. ;
Shan, Juan ;
Ju, Wen ;
Guo, Yanhui ;
Zhang, Ling .
PATTERN RECOGNITION, 2010, 43 (01) :299-317
[3]   Computerized lesion detection on breast ultrasound [J].
Drukker, K ;
Giger, ML ;
Horsch, K ;
Kupinski, MA ;
Vyborny, CJ ;
Mendelson, EB .
MEDICAL PHYSICS, 2002, 29 (07) :1438-1446
[4]  
Gonzalez R. C., 2008, NUEVA JERSEY
[5]   Probability density difference-based active contour for ultrasound image segmentation [J].
Liu, Bo ;
Cheng, H. D. ;
Huang, Jianhua ;
Tian, Jiawei ;
Tang, Xianglong ;
Liu, Jiafeng .
PATTERN RECOGNITION, 2010, 43 (06) :2028-2042
[6]   Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions [J].
Madabhushi, A ;
Metaxas, DN .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (02) :155-169
[7]   Ultrasound image segmentation: A survey [J].
Noble, J. Alison ;
Boukerroui, Djamal .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (08) :987-1010
[8]   THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS [J].
OTSU, N .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1979, 9 (01) :62-66
[9]   A TWO-STEP SEGMENTATION METHOD FOR BREAST ULTRASOUND MASSES BASED ON MULTI-RESOLUTION ANALYSIS [J].
Rodrigues, Rafael ;
Braz, Rui ;
Pereira, Manuela ;
Moutinho, Jose ;
Pinheiro, Antonio M. G. .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2015, 41 (06) :1737-1748
[10]   COMPUTER-AIDED DIAGNOSIS FOR BREAST ULTRASOUND USING COMPUTERIZED BI-RADS FEATURES AND MACHINE LEARNING METHODS [J].
Shan, Juan ;
Alam, S. Kaisar ;
Garra, Brian ;
Zhang, Yingtao ;
Ahmed, Tahira .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (04) :980-988