Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review

被引:152
|
作者
Tsiotsias, Anastasios I. [1 ]
Charisiou, Nikolaos D. [1 ]
Yentekakis, Ioannis V. [2 ]
Goula, Maria A. [1 ]
机构
[1] Univ Western Macedonia, Dept Chem Engn, Lab Alternat Fuels & Environm Catalysis LAFEC, GR-50100 Koila, Greece
[2] Tech Univ Crete, Sch Environm Engn, Lab Phys Chem & Chem Proc, GR-73100 Khania, Greece
关键词
CO2; methanation; bimetallic catalysts; Ni-based catalysts; promoters; alloy nanoparticles; bimetallic synergy;
D O I
10.3390/nano11010028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H-2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [21] CO and CO2 methanation over supported Ni catalysts
    Le, Thien An
    Kim, Min Sik
    Lee, Sae Ha
    Kim, Tae Wook
    Park, Eun Duck
    CATALYSIS TODAY, 2017, 293 : 89 - 96
  • [22] Engineering Ni/SiO2 catalysts for enhanced CO2 methanation
    Ye, Run-Ping
    Liao, Lin
    Reina, Tomas Ramirez
    Liu, Jiaxu
    Chevella, Durgaiah
    Jin, Yonggang
    Fan, Maohong
    Liu, Jian
    FUEL, 2021, 285
  • [23] Promotion of low-temperature Ni-based CO2 methanation catalysts by LaOx confined in mesoporous silica channels
    Ma, Jun
    Li, Shiyan
    Xu, Bing
    Chu, Wei
    Jiang, Qian
    Liu, Yuefeng
    MOLECULAR CATALYSIS, 2025, 574
  • [24] Enhancement of catalytic activity in CO2 methanation in Ni-based catalysts supported on delaminated ITQ-6 zeolite
    Machado-Silva, R. B.
    Da Costa-Serra, J. F.
    Chica, A.
    JOURNAL OF CATALYSIS, 2024, 436
  • [25] Influence of the ultrasound power density in the ultrasound-assisted synthesis of Ni-based LDH catalysts for CO2 methanation
    Obeid, Michel
    Poupin, Christophe
    Labaki, Madona
    Gupta, Sharad
    Aouad, Samer
    Delattre, Francois
    Ben Romdhane, Ferdaous
    Devred, Francois
    Gaigneaux, Eric M.
    Schnee, Josefine
    Abi-Aad, Edmond
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [26] From earth material to energy production: Ni-based modified halloysite catalysts for CO2 methanation
    Alkhoori, Ayesha A.
    Dabbawala, Aasif A.
    Baker, Mark A.
    Mao, Samuel
    Charisiou, Nikolaos
    Hinder, Steven S.
    Harfouche, Messaoud
    Anjum, Dalaver H.
    Goula, Maria A.
    Polychronopoulou, Kyriaki
    APPLIED CLAY SCIENCE, 2024, 259
  • [27] Carbon-Encapsulated Ni Catalysts for CO2 Methanation
    Kim, Hye Jeong
    Kim, Seung Bo
    Kim, Dong Hyun
    Youn, Jae-Rang
    Kim, Min-Jae
    Jeon, Sang Goo
    Lee, Gyoung-Ja
    Lee, Kyubock
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2021, 31 (09): : 525 - 531
  • [28] Remarkably stable and efficient Ni and Ni-Co catalysts for CO2 methanation
    Alrafei, Bachar
    Polaert, Isabelle
    Ledoux, Alain
    Azzolina-Jury, Federico
    CATALYSIS TODAY, 2020, 346 : 23 - 33
  • [29] Doping Ni/USY zeolite catalysts with transition metals for CO2 methanation
    Spataru, Daniela
    Canastreiro, Diogo
    Costa, Katarzyna Swirk Da
    Quindimil, Adrian
    Lopes, Jose M.
    Da Costa, Patrick
    Henriques, Carlos
    Bacariza, Carmen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 53 : 468 - 481
  • [30] Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction
    Yuan, Zhimin
    Sun, Xianhui
    Wang, Haiquan
    Zhao, Xingling
    Jiang, Zaiyong
    MOLECULES, 2024, 29 (16):