Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review

被引:152
|
作者
Tsiotsias, Anastasios I. [1 ]
Charisiou, Nikolaos D. [1 ]
Yentekakis, Ioannis V. [2 ]
Goula, Maria A. [1 ]
机构
[1] Univ Western Macedonia, Dept Chem Engn, Lab Alternat Fuels & Environm Catalysis LAFEC, GR-50100 Koila, Greece
[2] Tech Univ Crete, Sch Environm Engn, Lab Phys Chem & Chem Proc, GR-73100 Khania, Greece
关键词
CO2; methanation; bimetallic catalysts; Ni-based catalysts; promoters; alloy nanoparticles; bimetallic synergy;
D O I
10.3390/nano11010028
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H-2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Cobalt-doped Ni-based catalysts for low-temperature CO2 methanation
    Guo, Lei
    Zhang, Tong
    Qiu, Juan
    Bai, Jing
    Li, Zhongrui
    Wang, Hanying
    Cai, Xiaolong
    Yang, Yonglin
    Xu, Yunhua
    RENEWABLE ENERGY, 2024, 236
  • [2] Ni Catalysts for Thermochemical CO2 Methanation: A Review
    Kim, Jungpil
    COATINGS, 2024, 14 (10)
  • [3] Identifying the key structural features of Ni-based catalysts for the CO2 methanation reaction
    Li, Zhi-Xin
    Fu, Xin-Pu
    Ma, Chao
    Wang, Wei -Wei
    Liu, Jin-Cheng
    Jia, Chun -Jiang
    JOURNAL OF CATALYSIS, 2024, 436
  • [4] CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies
    Bian, Yufang
    Xu, Chunying
    Wen, Xueying
    Xu, Leilei
    Cui, Yan
    Wang, Shuhan
    Wu, Cai-e
    Qiu, Jian
    Cheng, Ge
    Chen, Mindong
    FUEL, 2023, 331
  • [5] Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review
    Li, Li
    Zeng, Wenqing
    Song, Mouxiao
    Wu, Xueshuang
    Li, Guiying
    Hu, Changwei
    CATALYSTS, 2022, 12 (02)
  • [6] Modifying Spinel Precursors for Highly Active and Stable Ni-based CO2 Methanation Catalysts
    Weber, Dennis
    Wadlinger, Katja M.
    Heinlein, Maximilian M.
    Franken, Tanja
    CHEMCATCHEM, 2022, 14 (20)
  • [7] Effects of molybdenum addition to activated carbon supported Ni-based catalysts for CO2 methanation
    Akpasi, Stephen Okiemute
    Isa, Yusuf Makarfi
    Mahlangu, Thembisile Patience
    Kiambi, Sammy Lewis
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2024, 14 (01) : 152 - 167
  • [8] La2O3-Modified Ni-Based Catalysts Supported on Ordered Mesoporous Silicas for CO2 Methanation
    Deng, Guoshu
    Nie, Guangze
    He, Xuehui
    Li, Lin
    Sun, Zhenkun
    Duan, Lunbo
    ACS APPLIED NANO MATERIALS, 2024, : 28436 - 28447
  • [9] Insight and comprehensive study of Ni-based catalysts supported on various metal oxides for CO2 methanation
    Kuhaudomlap, Sasithorn
    Srifa, Atthapon
    Koo-Amornpattana, Wanida
    Fukuhara, Choji
    Ratchahat, Sakhon
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Highly stable Ni-based catalysts derived from LDHs supported on zeolite for CO2 methanation
    Zhang, Fanying
    Lu, Bin
    Sun, Peiqin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (32) : 16183 - 16192