Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

被引:49
作者
Engelbrekt, C. [1 ]
Seselj, N. [1 ]
Poreddy, R. [2 ]
Riisager, A. [2 ]
Ulstrup, J. [1 ]
Zhang, J. [1 ]
机构
[1] Tech Univ Denmark, Dept Chem, NanoChem, Kemitorvet 207, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Chem, Ctr Catalysis & Sustainable Chem, Kemitorvet 207, DK-2800 Lyngby, Denmark
关键词
BENZOIC-ACID; FORMIC-ACID; SINGLE-STEP; FUEL-CELLS; ELECTROCATALYTIC OXIDATION; PLATINUM NANOPARTICLES; METHANOL OXIDATION; GOLD NANOPARTICLES; ETHANOL OXIDATION; SUB-10; NM;
D O I
10.1039/c5ta08922k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a facile synthesis protocol for atomically thin platinum (Pt) shells on top of gold (Au) nanoparticles (NPs) (Au@PtNPs) in one pot under mild conditions. The Au@PtNPs exhibited remarkable stability (> 2 years) at room temperature. The synthesis, bimetallic nanostructures and catalytic properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 +/- 2 nm Au@PtNPs contained 24 +/- 1 mol% Pt and 76 +/- 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data clearly show that the active surface is dominated by Pt with a specific surface area above 45 m(2) per gram of Pt. Interactions with the Au core increase the activity of the Pt shell by up to 55% and improve catalytic selectivity compared to pure Pt. The Au@Pt NPs show exciting catalytic activity in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mg(Pt))(-1) (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial < 5 nm PtNP catalyst. Excellent activity for the direct production of gamma-valerolactone, an alternative biofuel/fuel additive, from levulinic acid and methyl levulinate was finally demonstrated.
引用
收藏
页码:3278 / 3286
页数:9
相关论文
共 52 条
  • [1] [Anonymous], 1968, 1122162 SNIA VISCOSA
  • [2] [Anonymous], 1966, 1019795 SNIA VISCOSA
  • [3] [Anonymous], 1964, 967918 SNIA VISCOSA
  • [4] Aricò AS, 2001, FUEL CELLS, V1, P133
  • [5] Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening
    Bastus, Neus G.
    Comenge, Joan
    Puntes, Victor
    [J]. LANGMUIR, 2011, 27 (17) : 11098 - 11105
  • [6] Equilibrium and stability of phase-separating Au-Pt nanoparticles
    Braidy, Nadi
    Purdy, Gary R.
    Botton, Glanlulgi A.
    [J]. ACTA MATERIALIA, 2008, 56 (20) : 5972 - 5983
  • [7] Parallel pathways of ethanol oxidation: The effect of ethanol concentration
    Camara, GA
    Iwasita, T
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 578 (02) : 315 - 321
  • [8] Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications
    Chaudhuri, Rajib Ghosh
    Paria, Santanu
    [J]. CHEMICAL REVIEWS, 2012, 112 (04) : 2373 - 2433
  • [9] Size-Controlled Synthesis of Platinum-Copper Hierarchical Trigonal Bipyramid Nanoframes
    Chen, Sheng
    Su, Hongyang
    Wang, Youcheng
    Wu, Wenlong
    Zeng, Jie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (01) : 108 - 113
  • [10] Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes
    Cleemann, L. N.
    Buazar, F.
    Li, Q.
    Jensen, J. O.
    Pan, C.
    Steenberg, T.
    Dai, S.
    Bjerrum, N. J.
    [J]. FUEL CELLS, 2013, 13 (05) : 822 - 831