VEECH SURFACES WITH NONPERIODIC DIRECTIONS IN THE TRACE FIELD

被引:22
作者
Arnoux, Pierre [1 ]
Schmidt, Thomas A. [2 ]
机构
[1] Inst Math Luminy, UPR 9016, F-13288 Marseille 09, France
[2] Oregon State Univ, Corvallis, OR 97331 USA
关键词
Veech surface; pseudo-Anosov; Hecke group; trigonometric fields; TRANSLATION SURFACES; CONTINUED FRACTIONS; TEICHMULLER CURVES; BILLIARDS; DIFFEOMORPHISMS; GEOMETRY;
D O I
10.3934/jmd.2009.3.611
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Veech's original examples of translation surfaces V-q with what McMullen has dubbed "optimal dynamics" arise from appropriately gluing sides of two copies of the regular q-gon, with q >= 3. We show that every V-q whose trace field is of degree greater than 2 has nonperiodic directions of vanishing SAF-invariant. (Calta-Smillie have shown that under appropriate normalization, the set of slopes of directions where this invariant vanishes agrees with the trace field.) Furthermore, we give explicit examples of pseudo-Anosov diffeomorphisms whose contracting direction has zero SAF-invariant. In an appendix, we prove various elementary results on the inclusion of trigonometric fields.
引用
收藏
页码:611 / 629
页数:19
相关论文
共 28 条
[1]  
Arnoux P, 2000, J ANAL MATH, V81, P35, DOI 10.1007/BF02788985
[2]  
ARNOUX P, 1981, CR ACAD SCI I-MATH, V292, P75
[3]  
Arnoux P., 1981, Un invariant pour les echanges d'intervalles et les flots sur les surfaces
[4]  
Arnoux P, 1981, volume29 of Monograph. Enseign. Math., P5
[5]  
Borho W., 1973, ABH MATH SEM HAMBURG, V39, P83
[6]   Veech surfaces and complete periodicity in genus two [J].
Calta, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) :871-908
[7]   Algebraically periodic translation surfaces [J].
Calta, Kariane ;
Smillie, John .
JOURNAL OF MODERN DYNAMICS, 2008, 2 (02) :209-248
[8]  
Earle C J., 1997, CONT MATH, V201, P165, DOI DOI 10.1090/CONM/201/02618
[9]  
Gutkin E, 2000, DUKE MATH J, V103, P191
[10]   Generalized continued fractions and orbits under the action of Hecke triangle groups [J].
Hanson, Elisa ;
Merberg, Adam ;
Towse, Christopher ;
Yudovina, Elena .
ACTA ARITHMETICA, 2008, 134 (04) :337-348