Elevation of miR-302b prevents multiple myeloma cell growth and bone destruction by blocking DKK1 secretion

被引:9
|
作者
Wu, Zheyu [1 ]
Zhang, Yufeng [1 ]
Yang, Zhiqiang [1 ]
Zhu, Yufan [1 ]
Xie, Yuanlong [1 ]
Zhou, Fuling [2 ]
Cai, Lin [1 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Dept Orthoped, 169 Donghu Rd, Wuhan, Peoples R China
[2] Wuhan Univ, Zhongnan Hosp, Dept Hematol, 169 Donghu Rd, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple myeloma; Myeloma bone disease; miR-302b; DKK1;
D O I
10.1186/s12935-021-01887-y
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Myeloma bone disease (MBD) is a severe complication of multiple myeloma (MM) mainly due to an imbalance between enhanced osteoclast activity and reduced osteoblast function. Previous studies have demonstrated that miRNAs play a vital role in the osteogenic differentiation of mesenchymal stromal cells (MSCs) in MM. However, the value of miR-302b in MBD remains to be further elucidated. The aim of this study is to explore the role of miR-302b in the regulation of MBD osteogenic differentiation and evaluate the potential of a new therapeutic strategy for the clinical treatment of MBD. Method Our previous research demonstrated that MiR-302b belongs to the miR-302 cluster and is able to inhibit tumor growth and osteolysis in an orthotopic osteosarcoma xenograft tumor mouse model. In this study, we first transfected miR-302b mimics, miR-302b inhibitor, and miR-302b NC into MM1.S and RPMI8226 MM cells to detect the correlation between miR-302b expression in the pathological specimens and the clinicopathological features by qPCR, the target correlation between miR-302b and DKK1 by immunohistochemistry, qPCR and Western blot, and the correlation between miR-302b and the Wnt/beta-catenin signaling pathway by Western blot. The effect of miR-302b on osteoblastogenesis was also studied in a subperiosteal tumorigenesis model of NOD/SCID nude mice. Results We found that increased miR-302b suppressed cell proliferation and induced cell apoptosis in RPMI 8226 and MM1.S cells. TargetScan online bioinformatic analysis predicted that miR-302b is able to bind to 3 ' UTR of DKK1 mRNA. Target binding of miR-302b to DKK1 was demonstrated by dual-luciferase reporter assay, qPCR, Western blot and immunohistochemistry, indicating that miR-302b is able to degrade DKK1 in RPMI 8226 and MM1.S cells. The model of co-culturing MM cells with preosteoblast MC3T3-E1 cells showed that miR-302b inhibits MM-induced suppression of osteoblast differentiation. Western blotting showed that miR-302b promotes the Wnt/beta-catenin signaling pathway in MM cells. Micro-CT and immunohistochemistry results showed that miR-302b suppresses myeloma bone destruction in vivo. Conclusion miR-302b is able to target DKK1 and promote the Wnt/beta-catenin signaling pathway in MM.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Elevation of miR-302b prevents multiple myeloma cell growth and bone destruction by blocking DKK1 secretion
    Zheyu Wu
    Yufeng Zhang
    Zhiqiang Yang
    Yufan Zhu
    Yuanlong Xie
    Fuling Zhou
    Lin Cai
    Cancer Cell International, 21
  • [2] On the Role of DKK1 in Diseases of the Bone: Multiple Myeloma as the Prototype
    Shaughnessy, J. D., Jr.
    Qiang, Y.
    Yaccoby, S.
    Barlogie, B.
    BONE, 2010, 47 : S281 - S281
  • [3] Inhibiting Dickkopf-1 (Dkk1) Removes Suppression of Bone Formation and Prevents the Development of Osteolytic Bone Disease in Multiple Myeloma
    Heath, Deborah J.
    Chantry, Andrew D.
    Buckle, Clive H.
    Coulton, Les
    Shaughnessy, John D., Jr.
    Evans, Holly R.
    Snowden, John A.
    Stover, David R.
    Vanderkerken, Karin
    Croucher, Peter I.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2009, 24 (03) : 425 - 436
  • [4] Dkk1 transgenic mice for the study of bone lesions in human multiple myeloma.
    Fujita, K
    Kim, JS
    Eckhardt, LA
    Shaughnessy, JD
    Janz, S
    BLOOD, 2005, 106 (11) : 704A - 704A
  • [5] Multi-Targeting DKK1 and LRP6 Prevents Bone Loss and Improves Fracture Resistance in Multiple Myeloma
    Simic, Marija K.
    Mohanty, Sindhu T.
    Xiao, Ya
    Cheng, Tegan L.
    Taylor, Victoria E.
    Charlat, Olga
    Croucher, Peter I.
    McDonald, Michelle M.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2023, 38 (06) : 814 - 828
  • [6] Multi-Targeting DKK1 and LRP6 Prevents Myeloma-Induced Bone Disease
    Simic, Marija K.
    Mohanty, Sindhu T.
    Xiao, Ya
    Cheng, Tegan L.
    Cong, Feng
    Daley, Michael
    Croucher, Peter I.
    McDonald, Michelle M.
    BLOOD, 2021, 138
  • [7] Multi-Targeting DKK1 and LRP6 Prevents Myeloma-Induced Bone Disease
    Simic, Marija K.
    Mohanty, Sindhu T.
    Xiao, Ya
    Cheng, Tegan L.
    Cong, Feng
    Daley, Michael
    Croucher, Peter I.
    McDonald, Michelle M.
    JOURNAL OF BONE AND MINERAL RESEARCH, 2022, 37 : 333 - 333
  • [8] Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo
    Yaccoby, Shmuel
    Ling, Wen
    Zhan, Fenghuang
    Walker, Ronald
    Barlogie, Bart
    Shaughnessy, John D., Jr.
    BLOOD, 2007, 109 (05) : 2106 - 2111
  • [9] Inhibiting Dickkopf-1 (Dkk-1) prevents the development of osteolytic bone disease in multiple myeloma
    Heath, D. J.
    Chantry, A. D.
    Buckle, C.
    Coulton, L.
    Shaughnessy, J. D., Jr.
    Evans, H.
    Stover, D. R.
    Vanderkerken, K.
    Croucher, P. I.
    CALCIFIED TISSUE INTERNATIONAL, 2008, 83 (01) : 6 - 6
  • [10] Inhibiting dickkopf-1 (Dkk-1) prevents the development of osteolytic bone disease in multiple myeloma
    Heath, Debby
    Chantry, Andrew
    Buckle, Clive
    Coulton, Les
    Shaughnessy, John, Jr.
    Evans, Holly
    Stover, David
    Vanderkerken, Karin
    Croucher, Peter
    CANCER TREATMENT REVIEWS, 2008, 34 : S52 - S52