The Hausdorff measure of the level sets of Brownian motion on the Sierpinski carpet

被引:0
作者
Yuag, CG [1 ]
机构
[1] Cent S Univ, Changsha, Peoples R China
来源
MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS | 2002年
关键词
local time; Hausdorff measure; level set;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let L(t)(x) {x is an element of F, t > 0} be the local time of Brownian motion B on the Sierpinski carpet F, and phi(h) = h(beta)(log\logh\)(1-beta), For Allh is an element of (0, 1/4], beta is a constant. In this paper, we show that for each x is an element of F. cL(t)(x) less than or equal to phi - m{s : s less than or equal to t, B(s) = x} less than or equal to CL(t)(x), a.e. For Allt > 0. for some constants c and C is an element of (0, infinity).
引用
收藏
页码:351 / 361
页数:11
相关论文
共 8 条
[1]   LOCAL-TIMES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 85 (01) :91-104
[2]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[3]   RESISTANCE AND SPECTRAL DIMENSION OF SIERPINSKI CARPETS [J].
BARLOW, MT ;
BASS, RF ;
SHERWOOD, JD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (06) :L253-L258
[4]   ON THE RESISTANCE OF THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1990, 431 (1882) :345-360
[5]  
BARLOW MT, 1992, PROBAB THEORY RELAT
[6]  
PEKINS E, 1981, EXACT HAUSDORFF MEAS, V58, P373
[7]  
TAYLOR SJ, 1966, Z WAHRSCHEINLICHKEIT, V6, P170, DOI DOI 10.1007/BF00537139
[8]  
ZHOU XY, 1992, PURE APPL MATH, P283