Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrodinger equation

被引:25
作者
Guo, Lijuan [1 ]
Wang, Lihong [2 ]
Cheng, Yi [1 ]
He, Jingsong [3 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[3] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Guangdong, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2019年 / 79卷
基金
中国国家自然科学基金;
关键词
Two-component derivative nonlinear; Schrodinger equation; Rogue waves; Modulation instability; Darboux transformation; DARBOUX TRANSFORMATION; DYNAMICS; DARK;
D O I
10.1016/j.cnsns.2019.104915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The determinant representation of the n-th order different kinds of solutions to the two-component derivative nonlinear schrodinger (DNLS) equation is constructed by performing the n-fold Darboux transformation (DT). Based on this representation, the Peregrine-type, double, triple, quadruple, and sextuple vector rogue waves are obtained. Interestingly, the Peregrine-type rogue wave is not usual Peregrine soliton, but anomalous Peregrine soliton whose peak amplitude can go beyond threefold limit. Besides, coexisting rogue waves display more abundant dynamical behaviors which have not been found in scalar DNLS equation. Finally, we analyze modulation instability (MI) and find that there exist two types of MI: one MI has an usual M profile, but the other has a deformed double M-type profile. The parameter space for the two types of baseband MI regimes is agreement with the one which results in the generation of rogue waves. It hence further confirms that the baseband MI is a possible mechanism to generate the rogue wave in a nonlinear system from a plane wave background. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 65 条
[1]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[2]   Rogue wave triplets [J].
Ankiewicz, Adrian ;
Kedziora, David J. ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2011, 375 (28-29) :2782-2785
[3]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[4]   Vector Rogue Waves and Baseband Modulation Instability in the Defocusing Regime [J].
Baronio, Fabio ;
Conforti, Matteo ;
Degasperis, Antonio ;
Lombardo, Sara ;
Onorato, Miguel ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[5]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[6]  
Bilman D., ARXIV171006568
[7]   Matter rogue waves [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
PHYSICAL REVIEW A, 2009, 80 (03)
[8]   Observation of rogue wave triplets in water waves [J].
Chabchoub, A. ;
Akhmediev, N. .
PHYSICS LETTERS A, 2013, 377 (38) :2590-2593
[9]   Observation of a hierarchy of up to fifth-order rogue waves in a water tank [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Slunyaev, A. ;
Sergeeva, A. ;
Pelinovsky, E. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2012, 86 (05)
[10]   Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Akhmediev, N. .
PHYSICAL REVIEW X, 2012, 2 (01)