Remarks on the energy equality for the non-Newtonian fluids

被引:12
作者
Zhang, Zujin [1 ]
机构
[1] Gannon Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-Newtonian fluids; Weak solution; Energy equality; WEAK SOLUTIONS; EQUATIONS;
D O I
10.1016/j.jmaa.2019.123443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By establishing some new trilinear estimates, we could show that a weak solution to the non-Newtonian fluids satisfies the energy equality, under some integrability conditions on the velocity or velocity gradient. This significantly extends (Yang (2019) [13]) for non-Newtonian fluids, and improves (Berselli and Chiodaroli (2018) [3]) for Newtonian fluids. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Design and testing of energy-efficient heat exchangers for Newtonian and non-Newtonian fluids - A review
    Jayesh, P.
    Mukkamala, Y.
    John, Bibin
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2022, 236 (03) : 575 - 606
  • [22] Weak solutions for the Stokes system for compressible non-Newtonian fluids with unbounded divergence
    Pokorny, Milan
    Szlenk, Maja
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 9736 - 9750
  • [23] Non-Newtonian fluids with discontinuous-in-time stress tensor
    Bulicek, Miroslav
    Gwiazda, Piotr
    Skrzeczkowski, Jakub
    Woznicki, Jakub
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (02)
  • [24] Bubble motion in non-Newtonian fluids and suspensions
    Frank, X
    Li, HZ
    Funfschilling, D
    Burdin, F
    Ma, YG
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2003, 81 (3-4) : 483 - 490
  • [25] Random attractors of stochastic non-newtonian fluids
    Chun-xiao Guo
    Bo-ling Guo
    Yong-qian Han
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 165 - 180
  • [26] On the exponential behaviour of stochastic evolution equations for non-Newtonian fluids
    Razafimandimby, Paul Andre
    Sango, Mamadou
    APPLICABLE ANALYSIS, 2012, 91 (12) : 2217 - 2233
  • [27] Finite Velocity of the Propagation of Perturbations for a Class of Non-Newtonian Fluids
    Yuan, Hongjun
    Li, Huapeng
    ACTA APPLICANDAE MATHEMATICAE, 2013, 125 (01) : 49 - 77
  • [28] A review of constitutive models for non-Newtonian fluids
    Sun, Hongguang
    Jiang, Yuehua
    Zhang, Yong
    Jiang, Lijuan
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1483 - 1526
  • [29] Random attractors of stochastic non-newtonian fluids
    Guo, Chun-xiao
    Guo, Bo-ling
    Han, Yong-qian
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (01): : 165 - 180
  • [30] UNSTEADY FLOWS OF NON-NEWTONIAN FLUIDS IN GENERALIZED ORLICZ SPACES
    Wroblewska-Kaminska, Aneta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2565 - 2592