On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-effects meta-analysis

被引:69
作者
Roever, Christian [1 ]
Bender, Ralf [2 ]
Dias, Sofia [3 ]
Schmid, Christopher H. [4 ,5 ]
Schmidli, Heinz [6 ]
Sturtz, Sibylle [2 ]
Weber, Sebastian [7 ]
Friede, Tim [1 ]
机构
[1] Univ Med Ctr Gottingen, Dept Med Stat, Humboldtallee 32, D-37075 Gottingen, Germany
[2] Inst Qual & Efficiency Hlth Care IQWiG, Dept Med Biometry, Cologne, Germany
[3] Univ York, Ctr Reviews & Disseminat, York, N Yorkshire, England
[4] Brown Univ, Sch Publ Hlth, Dept Biostat, Providence, RI 02912 USA
[5] Brown Univ, Sch Publ Hlth, Ctr Evidence Synth Hlth, Providence, RI 02912 USA
[6] Novartis Pharma AG, Stat Methodol, Dev, Basel, Switzerland
[7] Novartis Pharma AG, Adv Exploratory Analyt, Basel, Switzerland
关键词
Bayes factor; GLMM; hierarchical model; marginal likelihood; variance component; RANDOM-EFFECTS METAANALYSIS; LIVER-TRANSPLANT RECIPIENTS; BETWEEN-STUDY HETEROGENEITY; HAMILTON RATING-SCALE; INTERLEUKIN-2-RECEPTOR ANTAGONISTS; PREDICTIVE-DISTRIBUTIONS; CLINICAL-TRIALS; REGRESSION; MODELS; SIZE;
D O I
10.1002/jrsm.1475
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The normal-normal hierarchical model (NNHM) constitutes a simple and widely used framework for meta-analysis. In the common case of only few studies contributing to the meta-analysis, standard approaches to inference tend to perform poorly, and Bayesian meta-analysis has been suggested as a potential solution. The Bayesian approach, however, requires the sensible specification of prior distributions. While noninformative priors are commonly used for the overall mean effect, the use of weakly informative priors has been suggested for the heterogeneity parameter, in particular in the setting of (very) few studies. To date, however, a consensus on how to generally specify a weakly informative heterogeneity prior is lacking. Here we investigate the problem more closely and provide some guidance on prior specification.
引用
收藏
页码:448 / 474
页数:27
相关论文
共 131 条
[1]   Music therapy for depression [J].
Aalbers, Sonja ;
Fusar-Poli, Laura ;
Freeman, Ruth E. ;
Spreen, Marinus ;
Ket, Johannes C. F. ;
Vink, Annemiek C. ;
Maratos, Anna ;
Crawford, Mike ;
Chen, Xi-Jing ;
Gold, Christian .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2017, (11)
[2]   The interpretation of random-effects meta-analysis in decision models [J].
Ades, AE ;
Lu, G ;
Higgins, JPT .
MEDICAL DECISION MAKING, 2005, 25 (06) :646-654
[3]   The effects of group improvisational music therapy on depression in adolescents and adults with substance abuse: a randomized controlled trial [J].
Albornoz, Yadira .
NORDIC JOURNAL OF MUSIC THERAPY, 2011, 20 (03) :208-224
[4]   Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis [J].
Anker, Stefan D. ;
Kirwan, Bridget-Anne ;
van Veldhuisen, Dirk J. ;
Filippatos, Gerasimos ;
Comin-Colet, Josep ;
Ruschitzka, Frank ;
Luscher, Thomas F. ;
Arutyunov, Gregory P. ;
Motro, Michael ;
Mori, Claudio ;
Roubert, Bernard ;
Pocock, Stuart J. ;
Ponikowski, Piotr .
EUROPEAN JOURNAL OF HEART FAILURE, 2018, 20 (01) :125-133
[5]  
[Anonymous], 2015, BAYESMETA BAYESIAN R
[6]  
Baio, 2015, BMETA BAYESIAN METAA
[7]   Meta-analysis inside and outside particle physics: two traditions that should converge? [J].
Baker, Rose D. ;
Jackson, Dan .
RESEARCH SYNTHESIS METHODS, 2013, 4 (02) :109-124
[8]   Preservation of classes of life distributions and stochastic orders under weighting [J].
Bartoszewicz, J ;
Skolimowska, M .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (06) :587-596
[9]   The interplay of Bayesian and frequentist analysis [J].
Bayarri, MJ ;
Berger, JO .
STATISTICAL SCIENCE, 2004, 19 (01) :58-80
[10]   The synthesis of regression slopes in meta-analysis [J].
Becker, Betsy Jane ;
Wu, Meng-Jia .
STATISTICAL SCIENCE, 2007, 22 (03) :414-429