Triangle groups and PSL2(q)

被引:10
作者
Marion, Claude [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/JGT.2009.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider hyperbolic triangle groups of the form T = T-p1,T-p2,T-p3, where p1, p2, p3 are prime numbers. Let p be a prime number and n be a positive integer. We give a necessary and sufficient condition for L-2(p(n)) to be the image of a given hyperbolic triangle group, where L-2(p(n)) denotes the projective special linear group PSL2(p(n)). It follows that, given a prime number p, there exists a unique positive integer n such that L-2(p(n)) is the image of a given hyperbolic triangle group. Finally, given a hyperbolic triangle group T, we determine the asymptotic probability that a randomly chosen homomorphism phi : T -> L-2(p(n)) is surjective, as p(n) tends to infinity.
引用
收藏
页码:689 / 708
页数:20
相关论文
共 50 条
  • [41] Surface symmetries and PSL2(p)
    Ozaydin, Murad
    Simmons, Charlotte
    Taback, Jennifer
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) : 2243 - 2268
  • [42] HURWITZ EXTENSIONS BY PSL2(7)
    COHEN, JM
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1979, 86 (NOV) : 395 - 400
  • [43] The variety of characters in PSL2(C)
    Heusener, M
    Porti, J
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 221 - 237
  • [44] INTRODUCTION TO PSL2 PHASE TROPICALIZATION
    Shkolnikov, Mikhail
    Petrov, Peter
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2024, 77 (10): : 1425 - 1432
  • [45] PSL2(59) is a subgroup of the Monster
    Holmes, PE
    Wilson, RA
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 141 - 152
  • [46] On surjectivity of word maps on PSL2
    Jezernik, Urban
    Sanchez, Jonatan
    [J]. JOURNAL OF ALGEBRA, 2021, 587 : 613 - 627
  • [47] A CHARACTERIZATION OF SIMPLE GROUPS PSL(2,Q)
    SUZUKI, M
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1968, 20 (1-2) : 342 - +
  • [48] C-groups of PSL(2, q) and PGL(2, q)
    Connor, Thomas
    Jambor, Sebastian
    Leemans, Dimitri
    [J]. JOURNAL OF ALGEBRA, 2015, 427 : 455 - 466
  • [49] Rigid braid orbits related to PSL2 (P2) and some simple groups
    Shiina, T
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2003, 55 (02) : 271 - 282
  • [50] A CASE-STUDY IN FINITE-GROUPS - PSL2(F7)
    BAUER, M
    ITZYKSON, C
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (16): : 3125 - 3153