Triangle groups and PSL2(q)

被引:10
作者
Marion, Claude [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/JGT.2009.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider hyperbolic triangle groups of the form T = T-p1,T-p2,T-p3, where p1, p2, p3 are prime numbers. Let p be a prime number and n be a positive integer. We give a necessary and sufficient condition for L-2(p(n)) to be the image of a given hyperbolic triangle group, where L-2(p(n)) denotes the projective special linear group PSL2(p(n)). It follows that, given a prime number p, there exists a unique positive integer n such that L-2(p(n)) is the image of a given hyperbolic triangle group. Finally, given a hyperbolic triangle group T, we determine the asymptotic probability that a randomly chosen homomorphism phi : T -> L-2(p(n)) is surjective, as p(n) tends to infinity.
引用
收藏
页码:689 / 708
页数:20
相关论文
共 50 条
  • [31] The two-prime hypothesis: groups whose nonabelian composition factors are not isomorphic to PSL2(q)
    Lewis, Mark L.
    Liu, Yanjun
    Tong-Viet, Hung P.
    MONATSHEFTE FUR MATHEMATIK, 2017, 184 (01): : 115 - 131
  • [32] POLYNOMIALS WITH GALOIS-GROUPS PGL2(P) AND PSL2(P) OVER Q(T)
    MALLE, G
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) : 511 - 526
  • [33] AUTOMORPHISMS OF NONSPLIT COVERINGS OF PSL2 (q) IN ODD CHARACTERISTIC DIVIDING q - 1
    Zavarnitsine, Andrei, V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01): : 285 - 291
  • [34] Regular galois realizations of PSL2(p2) over Q(T)
    Shiina, T
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 125 - 142
  • [35] A CHARACTERISTIC PROPERTY OF PSL2(7)
    SHI, WJ
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1984, 36 (JUN): : 354 - 356
  • [36] Commutators, commensurators, and PSL2(Z)
    Koberda, Thomas
    Mj, Mahan
    JOURNAL OF TOPOLOGY, 2021, 14 (03) : 861 - 876
  • [37] A note on the recognition of PSL2(p)
    Jia, Songfang
    Chen, Yanheng
    Li, Jinbao
    SCIENCEASIA, 2022, 48 (02): : 237 - 239
  • [38] SYMMETRIC 1-DESIGNS FROM PSL2(q), FOR q A POWER OF AN ODD PRIME
    Mbaale, Xavier
    Rodrigues, Bernardo G.
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (01) : 43 - 61
  • [39] Deformations of reducible representations of 3-manifold groups into PSL2( C)
    Heusener, Michael
    Porti, Joan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 : 965 - 997
  • [40] A PSL2 (C) Casson invariant
    Curtis, CL
    Geometry and Topology of Manifolds, 2005, 47 : 51 - 61