Triangle groups and PSL2(q)

被引:10
|
作者
Marion, Claude [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1515/JGT.2009.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider hyperbolic triangle groups of the form T = T-p1,T-p2,T-p3, where p1, p2, p3 are prime numbers. Let p be a prime number and n be a positive integer. We give a necessary and sufficient condition for L-2(p(n)) to be the image of a given hyperbolic triangle group, where L-2(p(n)) denotes the projective special linear group PSL2(p(n)). It follows that, given a prime number p, there exists a unique positive integer n such that L-2(p(n)) is the image of a given hyperbolic triangle group. Finally, given a hyperbolic triangle group T, we determine the asymptotic probability that a randomly chosen homomorphism phi : T -> L-2(p(n)) is surjective, as p(n) tends to infinity.
引用
收藏
页码:689 / 708
页数:20
相关论文
共 50 条
  • [1] DESIGNS FROM THE GROUPS PSL2(q) FOR CERTAIN q
    Darafsheh, M. R.
    Iranmanesh, A.
    Kahkeshani, R.
    QUAESTIONES MATHEMATICAE, 2009, 32 (03) : 297 - 306
  • [2] THE STRONG π-SYLOW THEOREM FOR THE GROUPS PSL2(q)
    Revin, D. O.
    Shepelev, V. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (05) : 1187 - 1194
  • [3] REALIZATION OF PSL2(FP)-GROUPS AS GALOIS-GROUPS ON Q
    MALLE, G
    MATZAT, BH
    MATHEMATISCHE ANNALEN, 1985, 272 (04) : 549 - 565
  • [4] Cohomology of PSL2(q)
    Saunders, Jack
    JOURNAL OF ALGEBRA, 2022, 595 : 347 - 379
  • [5] THE GENUS OF PSL2(Q)
    GLOVER, H
    SJERVE, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1987, 380 : 59 - 86
  • [6] Automorphisms of nonsplit extensions of 2-groups by PSL2(q)
    Revin, Danila O.
    Zavarnitsine, Andrei, V
    JOURNAL OF GROUP THEORY, 2021, 24 (06) : 1245 - 1261
  • [7] PSL2(Q) AND EXTENSIONS OF Q(X)
    VOLKLEIN, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 24 (01) : 145 - 153
  • [8] On the intersection spectrum of PSL2(q)
    Behajaina, Angelot
    Maleki, Roghayeh
    Razafimahatratra, Andriaherimanana Sarobidy
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 60 (04) : 899 - 927
  • [9] On Beauville structures for PSL2(q)
    Garion, Shelly
    JOURNAL OF GROUP THEORY, 2015, 18 (06) : 981 - 1019
  • [10] Maximal cocliques in PSL2(q)
    Saunders, Jack
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3921 - 3931