共 50 条
Triangle groups and PSL2(q)
被引:10
|作者:
Marion, Claude
[1
]
机构:
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金:
英国工程与自然科学研究理事会;
关键词:
D O I:
10.1515/JGT.2009.004
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider hyperbolic triangle groups of the form T = T-p1,T-p2,T-p3, where p1, p2, p3 are prime numbers. Let p be a prime number and n be a positive integer. We give a necessary and sufficient condition for L-2(p(n)) to be the image of a given hyperbolic triangle group, where L-2(p(n)) denotes the projective special linear group PSL2(p(n)). It follows that, given a prime number p, there exists a unique positive integer n such that L-2(p(n)) is the image of a given hyperbolic triangle group. Finally, given a hyperbolic triangle group T, we determine the asymptotic probability that a randomly chosen homomorphism phi : T -> L-2(p(n)) is surjective, as p(n) tends to infinity.
引用
收藏
页码:689 / 708
页数:20
相关论文