Systems biology as a foundation for genome-scale synthetic biology

被引:77
作者
Barrett, Christian L.
Kim, Tae Yong
Kim, Hyun Uk
Palsson, Bernhard O.
Lee, Sang Yup [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Chem & Biomol Engn, Dept BioSyst, BioProc Engn Res Ctr,Bioinformat Res Ctr, Taejon 305701, South Korea
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.copbio.2006.08.001
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the ambitions of synthetic biology approach genome-scale engineering, comprehensive characterization of cellular systems is required, as well as a means to accurately model cell-scale molecular interactions. These requirements are coincident with the goals of systems biology and, thus, systems biology will become the foundation for genome-scale synthetic biology. Systems biology will form this foundation through its efforts to reconstruct and integrate cellular systems, develop the mathematics, theory and software tools for the accurate modeling of these integrated systems, and through evolutionary mechanisms. As genome-scale synthetic biology is so enabled, it will prove to be a positive feedback driver of systems biology by exposing and forcing researchers to confront those aspects of systems biology which are inadequately understood.
引用
收藏
页码:488 / 492
页数:5
相关论文
共 50 条
[11]   Environmental selection of the feed-forward loop circuit in gene-regulation networks [J].
Dekel, E ;
Mangan, S ;
Alon, U .
PHYSICAL BIOLOGY, 2005, 2 (02) :81-88
[12]   Optimality and evolutionary tuning of the expression level of a protein [J].
Dekel, E ;
Alon, U .
NATURE, 2005, 436 (7050) :588-592
[13]   Protein molecular function prediction by Bayesian phylogenomics [J].
Engelhardt, BE ;
Jordan, MI ;
Muratore, KE ;
Brenner, SE .
PLOS COMPUTATIONAL BIOLOGY, 2005, 1 (05) :432-445
[14]   Reconstructing the metabolic network of a bacterium from its genome [J].
Francke, C ;
Siezen, RJ ;
Teusink, B .
TRENDS IN MICROBIOLOGY, 2005, 13 (11) :550-558
[15]   Design of genetic networks with specified functions by evolution in silico [J].
François, P ;
Hakim, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (02) :580-585
[16]   Combinatorial synthesis of genetic networks [J].
Guet, CC ;
Elowitz, MB ;
Hsing, WH ;
Leibler, S .
SCIENCE, 2002, 296 (5572) :1466-1470
[17]   The Escherichia coli proteome:: Past, present, and future prospects [J].
Han, Mee-Jung ;
Lee, Sang Yup .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2006, 70 (02) :362-+
[18]   A new approach to decoding life: Systems biology [J].
Ideker, T ;
Galitski, T ;
Hood, L .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2001, 2 :343-372
[19]   Metabolomics and systems biology: making sense of the soup [J].
Kell, DB .
CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (03) :296-307
[20]   The meaning of systems biology [J].
Kirschner, MW .
CELL, 2005, 121 (04) :503-504