The Dirichlet problem for the minimal hypersurface equation on arbitrary domains of a Riemannian manifold

被引:8
|
作者
Aiolfi, Ari [1 ]
Ripoll, Jaime [2 ]
Soret, Marc [1 ]
机构
[1] Univ Tours, Dept Math, Tours, France
[2] Univ Fed Rio Grande do Sul, Inst Matemat, BR-91509900 Porto Alegre, RS, Brazil
关键词
GRAPHS;
D O I
10.1007/s00229-015-0774-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Dirichlet problem for the minimal hypersurface equation defined on arbitrary C (2) bounded domain Omega of an arbitrary complete Riemannian manifold M is solvable if the oscillation of the boundary data is bounded by a function that is explicitely given and that depends only on the first and second derivatives of the boundary data as well as the second fundamental form of the boundary and the Ricci curvature of the ambient space M. This result extends Theorem 2 of Jenkins-Serrin (J Reine Angew Math 229:170-187,1968) about the solvability of the Dirichlet problem for the minimal hypersurface equation defined on bounded domains of the Euclidean space. We deduce that the Dirichlet problem for the minimal hypersurface equation is solvable for any continuous boundary data on a mean convex domain. We also show existence and uniqueness of the Dirichlet problem with boundary data at infinity-exterior Dirichlet problem-on Hadamard manifolds.
引用
收藏
页码:71 / 81
页数:11
相关论文
共 50 条
  • [1] The Dirichlet problem for the minimal hypersurface equation on arbitrary domains of a Riemannian manifold
    Ari Aiolfi
    Jaime Ripoll
    Marc Soret
    Manuscripta Mathematica, 2016, 149 : 71 - 81
  • [2] On the Asymptotic Dirichlet Problem for the Minimal Hypersurface Equation in a Hadamard Manifold
    Casteras, Jean-Baptiste
    Holopainen, Ilkka
    Ripoll, Jaime B.
    POTENTIAL ANALYSIS, 2017, 47 (04) : 485 - 501
  • [3] On the Asymptotic Dirichlet Problem for the Minimal Hypersurface Equation in a Hadamard Manifold
    Jean-Baptiste Casteras
    Ilkka Holopainen
    Jaime B. Ripoll
    Potential Analysis, 2017, 47 : 485 - 501
  • [4] THE DIRICHLET PROBLEM FOR THE MIMIMAL HYPERSURFACE EQUATION WITH LIPSCHITZ CONTINUOUS BOUNDARY DATA IN A RIEMANNIAN MANIFOLD
    Aiolei, Ari
    Nunes, Giovanni da Silva
    Sauer, Lisandra
    Soares, Rodrigo
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 307 (01) : 1 - 12
  • [5] DIRICHLET PROBLEM FOR MONGE-AMPERE EQUATION ON A RIEMANNIAN MANIFOLD
    GILLOT, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1981, 293 (14): : 645 - 647
  • [6] Some existence results on the exterior Dirichlet problem for the minimal hypersurface equation
    do Espirito-Santo, Nedir
    Ripoll, Jaime
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03): : 385 - 393
  • [7] The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface
    Mazet, L.
    Rodriguez, M. M.
    Rosenberg, H.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 102 : 985 - 1023
  • [8] DIRICHLET PROBLEM FOR MINIMAL SURFACE EQUATION ON UNBOUNDED-DOMAINS
    COLLIN, P
    KRUST, R
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (04): : 443 - 462
  • [9] THE DIRICHLET PROBLEM FOR THE MINIMAL SURFACE EQUATION ON UNBOUNDED PLANAR DOMAINS
    EARP, RS
    ROSENBERG, H
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1989, 68 (02): : 163 - 183
  • [10] The Dirichlet problem for the minimal hypersurface equation in M x R with prescribed asymptotic boundary
    do Espirito-Santo, Nedir
    Fornari, Susana
    Ripoll, Jaime B.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 93 (02): : 204 - 221