Canonical Operator on Punctured Lagrangian Manifolds

被引:5
作者
Dobrokhotov, S. Yu [1 ]
Nazaikinskii, V. E. [1 ]
Schafarevich, A., I [2 ]
机构
[1] Ishlinsky Inst Problems Mech RAS, Moscow, Russia
[2] Lomonsov Moscow State Univ, Moscow, Russia
关键词
D O I
10.1134/S1061920821010040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A version of Maslov's canonical operator on Lagrangian manifolds with singularities of special form (the so-called punctured manifolds) is described. These manifolds naturally arise in the construction of asymptotic solutions for a wide class differential and pseudodifferential equations; in particular, for Petrovsky hyperbolic systems or pseudo-differential equations of water waves.
引用
收藏
页码:22 / 36
页数:15
相关论文
共 18 条
[1]   New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems [J].
Allilueva, A. I. ;
Dobrokhotov, S. Yu. ;
Sergeev, S. A. ;
Shafarevich, A. I. .
DOKLADY MATHEMATICS, 2015, 92 (02) :548-553
[2]  
Arnold VI., 1967, FUNCT ANAL APPL+, V1, P1, DOI 10.1007/BF01075861
[3]   Localized wave and vortical solutions to linear hyperbolic systems and their application to linear shallow water equations [J].
Dobrokhotov, S. Yu. ;
Shafarevich, A. I. ;
Tirozzi, B. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2008, 15 (02) :192-221
[4]   Description of tsunami propagation based on the Maslov canonical operator [J].
Dobrokhotov, S. Yu. ;
Sekerzh-Zenkovich, S. Ya. ;
Tirozzi, B. ;
Tudorovskii, T. Ya. .
DOKLADY MATHEMATICS, 2006, 74 (01) :592-596
[5]   Efficient Asymptotics in Problems on the Propagation of Waves Generated by Localized Sources in Linear Multidimensional Inhomogeneous and Dispersive Media [J].
Dobrokhotov, S. Yu ;
Nazaikinskii, V. E. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (08) :1348-1360
[6]   Uniform Formulas for the Asymptotic Solution of a Linear Pseudodifferential Equation Describing Water Waves Generated by a Localized Source [J].
Dobrokhotov, S. Yu ;
Nazaikinskii, V. E. ;
Tolchennikov, A. A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2020, 27 (02) :185-191
[7]   Punctured Lagrangian manifolds and asymptotic solutions of the linear water wave equations with localized initial conditions [J].
Dobrokhotov, S. Yu. ;
Nazaikinskii, V. E. .
MATHEMATICAL NOTES, 2017, 101 (5-6) :1053-1060
[8]   New integral representations of the Maslov canonical operator in singular charts [J].
Dobrokhotov, S. Yu. ;
Nazaikinskii, V. E. ;
Shafarevich, A. I. .
IZVESTIYA MATHEMATICS, 2017, 81 (02) :286-328
[9]   Propagation of a linear wave created by a spatially localized perturbation in a regular lattice and punctured Lagrangian manifolds [J].
Dobrokhotov, S. Yu. ;
Nazaikinskii, V. E. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2017, 24 (01) :127-133
[10]   Maslov's canonical operator in arbitrary coordinates on the Lagrangian manifold [J].
Dobrokhotov, S. Yu. ;
Nazaikinskii, V. E. ;
Shafarevich, A. I. .
DOKLADY MATHEMATICS, 2016, 93 (01) :99-102