Sign-changing tower of bubbles for the Brezis-Nirenberg problem

被引:18
作者
Iacopetti, Alessandro [1 ]
Vaira, Giusi [2 ]
机构
[1] Univ Rome Tre, Dipartimento Matemat & Fis, Lgo S Leonardo Murialdo 1, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, Piazzale A Moro 1, I-00161 Rome, Italy
关键词
Semilinear elliptic equations; blowing-up solution; tower of bubbles; NONLINEAR ELLIPTIC PROBLEMS; NODAL SOLUTIONS; CRITICAL GROWTH; BLOW-UP; EQUATIONS; EXISTENCE; SYMMETRY; DOMAIN; NUMBER;
D O I
10.1142/S0219199715500364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the Brezis-Nirenberg problem: -Delta u = vertical bar u vertical bar(p-1)u + epsilon u in Omega, u = 0 on partial derivative Omega, where Omega is a symmetric bounded smooth domain in R-N, N >= 7 and p = N+2/N-2, has a solution with the shape of a tower of two bubbles with alternate signs, centered at the center of symmetry of the domain, for all epsilon > 0 sufficiently small.
引用
收藏
页数:53
相关论文
共 31 条
[1]  
Anbin T., 1976, J. Diff. Geom., V11, P573
[2]  
[Anonymous], 2006, PROGR MATH
[3]   NODAL SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENTS [J].
ATKINSON, FV ;
BREZIS, H ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (01) :151-170
[4]   On the existence and the profile of nodal solutions of elliptic equations involving critical growth [J].
Bartsch, T ;
Micheletti, AM ;
Pistoia, A .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (03) :265-282
[5]   Classification of low energy sign-changing solutions of an almost critical problem [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :347-373
[6]   Blow-up and symmetry of sign-changing solutions to some critical elliptic equations [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :771-795
[7]   Blow-up and nonexistence of sign changing solutions to the Brezis-Nirenberg problem in dimension three [J].
Ben Ayed, Mohamed ;
El Mehdi, Khalil ;
Pacella, Filomena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (04) :567-589
[8]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297