Validation of low-dose lung cancer PET-CT protocol and PET image improvement using machine learning

被引:10
作者
Nai, Ying-Hwey [1 ]
Schaefferkoetter, Josh [1 ,2 ,3 ]
Fakhry-Darian, Daniel [1 ]
O'Doherty, Sophie [1 ]
Totman, John J. [1 ]
Conti, Maurizio [3 ]
Townsend, David W. [1 ,4 ]
Sinha, Arvind K. [5 ]
Tan, Teng-Hwee [6 ]
Tham, Ivan [7 ]
Alexander, Daniel C. [1 ,8 ,9 ]
Reilhac, Anthonin [1 ]
机构
[1] Natl Univ Singapore, Clin Imaging Res Ctr, Yong Loo Lin Sch Med, Singapore, Singapore
[2] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
[3] Siemens Med Solut USA Inc, Mol Imaging, Knoxville, TN USA
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Diagnost Radiol, Singapore, Singapore
[5] Natl Univ Singapore Hosp, Dept Diagnost Imaging, Singapore, Singapore
[6] Natl Univ Canc Inst, Dept Radiat Oncol, Singapore, Singapore
[7] Mt Elizabeth Novena Hosp, Radiat Oncol Ctr, Singapore, Singapore
[8] UCL, Ctr Med Image Comp, London, England
[9] UCL, Dept Comp Sci, London, England
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2021年 / 81卷
关键词
Positron emission tomography (PET); Lung cancer; Machine learning; Lesion detection;
D O I
10.1016/j.ejmp.2020.11.027
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To conduct a simplified lesion-detection task of a low-dose (LD) PET-CT protocol for frequent lung screening using 30% of the effective PETCT dose and to investigate the feasibility of increasing clinical value of low-statistics scans using machine learning. Methods: We acquired 33 SD PET images, of which 13 had actual LD (ALD) PET, and simulated LD (SLD) PET images at seven different count levels from the SD PET scans. We employed image quality transfer (IQT), a machine learning algorithm that performs patch-regression to map parameters from low-quality to high-quality images. At each count level, patches extracted from 23 pairs of SD/SLD PET images were used to train three IQT models - global linear, single tree, and random forest regressions with cubic patch sizes of 3 and 5 voxels. The models were then used to estimate SD images from LD images at each count level for 10 unseen subjects. Lesion-detection task was carried out on matched lesion-present and lesion-absent images. Results: LD PET-CT protocol yielded lesion detectability with sensitivity of 0.98 and specificity of 1. Random forest algorithm with cubic patch size of 5 allowed further 11.7% reduction in the effective PETCT dose without compromising lesion detectability, but underestimated SUV by 30%. Conclusion: LD PET-CT protocol was validated for lesion detection using ALD PET scans. Substantial image quality improvement or additional dose reduction while preserving clinical values can be achieved using machine learning methods though SUV quantification may be biased and adjustment of our research protocol is required for clinical use.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 26 条
[11]   Quantitative comparison of PET performance-Siemens Biograph mCT and mMR [J].
Karlberg, Anna M. ;
Saether, Oddbjorn ;
Eikenes, Live ;
Goa, Pal Erik .
EJNMMI PHYSICS, 2016, 3 (01)
[12]   Standard-dose vs. low-dose CT protocols in the evaluation of localized lung lesions: Capability for lesion characterization-iLEAD study [J].
Kubo, Takeshi ;
Ohno, Yoshiharu ;
Takenaka, Daisuke ;
Nishino, Mizuki ;
Gautam, Shiva ;
Sugimura, Kazuro ;
Kauczor, Hans Ulrich ;
Hatabu, Hiroto .
EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2016, 3 :67-73
[13]   A practical and adaptive approach to lung cancer screening: a review of international evidence and position on CT lung cancer screening in the Singaporean population by the College of Radiologists Singapore [J].
Liew, Charlene Jin Yee ;
Leong, Lester Chee Hao ;
Teo, Lynette Li San ;
Ong, Ching Ching ;
Cheah, Foong Koon ;
Tham, Wei Ping ;
Salahudeen, Haja Mohamed Mohideen ;
Lee, Chau Hung ;
Kaw, Gregory Jon Leng ;
Tee, Augustine Kim Huat ;
Tsou, Ian Yu Yan ;
Tay, Kiang Hiong ;
Quah, Raymond ;
Tan, Bien Peng ;
Chou, Hong ;
Tan, Daniel ;
Poh, Angeline Choo Choo ;
Tan, Andrew Gee Seng .
SINGAPORE MEDICAL JOURNAL, 2019, 60 (11) :554-559
[14]   An investigation of quantitative accuracy for deep learning based denoising in oncological PET [J].
Lu, Wenzhuo ;
Onofrey, John A. ;
Lu, Yihuan ;
Shi, Luyao ;
Ma, Tianyu ;
Liu, Yaqiang ;
Liu, Chi .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (16)
[16]   Low-dose computed tomography screening reduces lung cancer mortality [J].
Ostrowski, Marcin ;
Marjanski, Tomasz ;
Rzyman, Witold .
ADVANCES IN MEDICAL SCIENCES, 2018, 63 (02) :230-236
[17]   Exposure to low dose computed tomography for lung cancer screening and risk of cancer: secondary analysis of trial data and risk-benefit analysis [J].
Rampinelli, Cristiano ;
De Marco, Paolo ;
Origgi, Daniela ;
Maisonneuve, Patrick ;
Casiraghi, Monica ;
Veronesi, Giulia ;
Spaggiari, Lorenzo ;
Bellomi, Massimo .
BMJ-BRITISH MEDICAL JOURNAL, 2017, 356
[18]   Low dose positron emission tomography emulation from decimated high statistics: A clinical validation study [J].
Schaefferkoetter, Josh ;
Nai, Ying-Hwey ;
Reilhac, Anthonin ;
Townsend, David William ;
Eriksson, Lars ;
Conti, Maurizio .
MEDICAL PHYSICS, 2019, 46 (06) :2638-2645
[19]   Quantitative Accuracy and Lesion Detectability of Low-Dose 18F-FDG PET for Lung Cancer Screening [J].
Schaefferkoetter, Joshua D. ;
Yan, Jianhua ;
Sjoholm, Therese ;
Townsend, David W. ;
Conti, Maurizio ;
Tam, John Kit Chung ;
Soo, Ross A. ;
Tham, Ivan .
JOURNAL OF NUCLEAR MEDICINE, 2017, 58 (03) :399-405
[20]   Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results [J].
Schwyzer, Moritz ;
Ferraro, Daniela A. ;
Muehlematter, Urs J. ;
Curioni-Fontecedro, Alessandra ;
Huellner, Martin W. ;
von Schulthess, Gustav K. ;
Kaufmann, Philipp A. ;
Burger, Irene A. ;
Messerli, Michael .
LUNG CANCER, 2018, 126 :170-173