Validation of low-dose lung cancer PET-CT protocol and PET image improvement using machine learning

被引:10
作者
Nai, Ying-Hwey [1 ]
Schaefferkoetter, Josh [1 ,2 ,3 ]
Fakhry-Darian, Daniel [1 ]
O'Doherty, Sophie [1 ]
Totman, John J. [1 ]
Conti, Maurizio [3 ]
Townsend, David W. [1 ,4 ]
Sinha, Arvind K. [5 ]
Tan, Teng-Hwee [6 ]
Tham, Ivan [7 ]
Alexander, Daniel C. [1 ,8 ,9 ]
Reilhac, Anthonin [1 ]
机构
[1] Natl Univ Singapore, Clin Imaging Res Ctr, Yong Loo Lin Sch Med, Singapore, Singapore
[2] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
[3] Siemens Med Solut USA Inc, Mol Imaging, Knoxville, TN USA
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Diagnost Radiol, Singapore, Singapore
[5] Natl Univ Singapore Hosp, Dept Diagnost Imaging, Singapore, Singapore
[6] Natl Univ Canc Inst, Dept Radiat Oncol, Singapore, Singapore
[7] Mt Elizabeth Novena Hosp, Radiat Oncol Ctr, Singapore, Singapore
[8] UCL, Ctr Med Image Comp, London, England
[9] UCL, Dept Comp Sci, London, England
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2021年 / 81卷
关键词
Positron emission tomography (PET); Lung cancer; Machine learning; Lesion detection;
D O I
10.1016/j.ejmp.2020.11.027
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To conduct a simplified lesion-detection task of a low-dose (LD) PET-CT protocol for frequent lung screening using 30% of the effective PETCT dose and to investigate the feasibility of increasing clinical value of low-statistics scans using machine learning. Methods: We acquired 33 SD PET images, of which 13 had actual LD (ALD) PET, and simulated LD (SLD) PET images at seven different count levels from the SD PET scans. We employed image quality transfer (IQT), a machine learning algorithm that performs patch-regression to map parameters from low-quality to high-quality images. At each count level, patches extracted from 23 pairs of SD/SLD PET images were used to train three IQT models - global linear, single tree, and random forest regressions with cubic patch sizes of 3 and 5 voxels. The models were then used to estimate SD images from LD images at each count level for 10 unseen subjects. Lesion-detection task was carried out on matched lesion-present and lesion-absent images. Results: LD PET-CT protocol yielded lesion detectability with sensitivity of 0.98 and specificity of 1. Random forest algorithm with cubic patch size of 5 allowed further 11.7% reduction in the effective PETCT dose without compromising lesion detectability, but underestimated SUV by 30%. Conclusion: LD PET-CT protocol was validated for lesion detection using ALD PET scans. Substantial image quality improvement or additional dose reduction while preserving clinical values can be achieved using machine learning methods though SUV quantification may be biased and adjustment of our research protocol is required for clinical use.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 26 条
[1]   Image quality transfer and applications in diffusion MRI [J].
Alexander, Daniel C. ;
Zikic, Darko ;
Ghosh, Aurobrata ;
Tanno, Ryutaro ;
Wottschel, Viktor ;
Zhang, Jiaying ;
Kaden, Enrico ;
Dyrby, Tim B. ;
Sotiropoulos, Stamatios N. ;
Zhang, Hui ;
Criminisi, Antonio .
NEUROIMAGE, 2017, 152 :283-298
[2]   Deeper Image Quality Transfer: Training Low-Memory Neural Networks for 3D Images [J].
Blumberg, Stefano B. ;
Tanno, Ryutaro ;
Kokkinos, Iasonas ;
Alexander, Daniel C. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :118-125
[3]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[4]   VISUAL SIGNAL-DETECTION .4. OBSERVER INCONSISTENCY [J].
BURGESS, AE ;
COLBORNE, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1988, 5 (04) :617-627
[5]   Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs [J].
Chen, Kevin T. ;
Gong, Enhao ;
Macruz, Fabiola Bezerra de Carvalho ;
Xu, Junshen ;
Boumis, Athanasia ;
Khalighi, Mehdi ;
Poston, Kathleen L. ;
Sha, Sharon J. ;
Greicius, Michael D. ;
Mormino, Elizabeth ;
Pauly, John M. ;
Srinivas, Shyam ;
Zaharchuk, Greg .
RADIOLOGY, 2019, 290 (03) :649-656
[6]   Comparison of NEMA characterizations for Discovery MI and Discovery MI-DR TOF PET/CT systems at different sites and with other commercial PET/CT systems [J].
Chicheportiche, Alexandre ;
Marciano, Rami ;
Orevi, Marina .
EJNMMI PHYSICS, 2020, 7 (01)
[7]   Evaluation of PET Scanner Performance in PET/MR and PET/CT Systems: NEMA Tests [J].
Demir, Mustafa ;
Toklu, Turkay ;
Abuqbeitah, Mohammad ;
Cetin, Huseyin ;
Sezgin, H. Sezer ;
Yeyin, Nami ;
Sonmezoglu, Kerim .
MOLECULAR IMAGING AND RADIONUCLIDE THERAPY, 2018, 27 (01) :10-18
[8]  
Fantacci ME, 2019, J MED ARTIF INTELL, V2, P6, DOI [10.21037/jmai.2019.03.03, DOI 10.21037/JMAI.2019.03.03]
[9]   Performance characteristic evaluation of a bismuth germanate-based high-sensitivity 5-ring discovery image quality positron emission tomography/computed tomography system as per National Electrical Manufacturers Association NU 2-2012 [J].
Jha, Ashish Kumar ;
Mithun, Sneha ;
Puranik, Ameya D. ;
Purandare, Nilendu C. ;
Shah, Sneha ;
Agrawal, Archi ;
Rangarajan, Venkatesh .
WORLD JOURNAL OF NUCLEAR MEDICINE, 2019, 18 (04) :351-360
[10]   Full-Dose PET Image Estimation from Low-Dose PET Image Using Deep Learning: a Pilot Study [J].
Kaplan, Sydney ;
Zhu, Yang-Ming .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (05) :773-778