Zhi-Wei Sun's 1-3-5 conjecture and variations

被引:6
作者
Machiavelo, Antonio [1 ]
Tsopanidis, Nikolaos [1 ]
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Porto, Portugal
关键词
Quaternions; Lipschitz integers; 1-3-5; conjecture;
D O I
10.1016/j.jnt.2020.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using quaternion arithmetic in the ring of Lipschitz integers, we present a proof of Zhi-Wei Sun's "1-3-5 conjecture" for all integers, and reduce the general case to its verification up to 1.052 x 10(11). The computational verification was performed by the authors and a colleague, concluding the proof of Sun's 1-3-5 conjecture. We also establish some variations of this conjecture. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 11 条
[1]  
Ankeny N., 1957, Proceedings of the American Mathematical Society, V8, P316
[2]  
[Anonymous], 2003, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry
[3]  
Legendre AM., 1808, ESSAI THEORIE NOMBRE
[4]  
Lehmer D.H., 1948, Am. Math. Mon., V55, P476
[5]   On the arithmetic of quaternions [J].
Pall, Gordon .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1940, 47 (1-3) :487-500
[6]   Some variants of Lagrange's four squares theorem [J].
Sun, Yu-Chen ;
Sun, Zhi-Wei .
ACTA ARITHMETICA, 2018, 183 (04) :339-356
[7]   Restricted sums of four squares [J].
Sun, Zhi-Wei .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (09) :1863-1893
[8]   Refining Lagrange's four-square theorem [J].
Sun, Zhi-Wei .
JOURNAL OF NUMBER THEORY, 2017, 175 :167-190
[9]  
Tsopanidis N, 2020, ARXIV200513526
[10]  
Wojcik J., 1971, Colloquium Mathematicum, V1, P117