A LOCAL-IN-SPACE-TIMESTEP APPROACH TO A FINITE ELEMENT DISCRETIZATION OF THE HEAT EQUATION WITH A POSTERIORI ESTIMATES

被引:8
作者
Berrone, Stefano [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
a posteriori error estimates; parabolic problems; multiscale problems; local timesteps; space and time adaptivity; DISCONTINUOUS COEFFICIENTS; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS;
D O I
10.1137/080737058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new numerical method is presented for the heat equation with discontinuous coefficients based on a Crank-Nicolson scheme and a conforming finite element space discretization. In the proposed method each node of the spatial discretization may have the global timestep split into an arbitrary number of local substeps in order to pursue a local improvement of the time discretization in the regions of the spatial domain where the solution changes rapidly. This method can possibly be used together with adaptive strategies for both the space discretization and the choice of timesteps to suitably produce an efficient space-time discretizaton of the problem. Robust a posteriori upper and lower bounds of the error are proposed to attain this target. Moreover, some indications are given on how to modify the mesh, the timestep, and the number of substeps to improve the discretization.
引用
收藏
页码:3109 / 3138
页数:30
相关论文
共 19 条
[1]  
Akrivis G, 2006, MATH COMPUT, V75, P511, DOI 10.1090/S0025-5718-05-01800-4
[2]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[3]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[4]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[5]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[6]   Robust A posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients [J].
Berrone, Stefano .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (06) :991-1021
[7]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[8]  
Ciarlet Philippe G., 2002, Finite Element Method for Elliptic Problems
[9]  
CLEMENT P, 1975, REV FR AUTOMAT INFOR, V9, P77
[10]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124