Examples of non-algebraic classes in the Brown-Peterson tower

被引:1
作者
Quick, Gereon [1 ]
机构
[1] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
关键词
INTEGRAL TATE-CONJECTURE; COHOMOLOGY; SPECTRA; CYCLES;
D O I
10.1007/s00209-018-2164-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every n >= 0, we construct classes in the Brown-Peterson cohomology BP < n > of smooth projective complex algebraic varieties which are not in the image of the cycle map from the corresponding motivic Brown-Peterson cohomology. This generalizes the examples of Atiyah and Hirzebruch to all finite levels in the Brown-Peterson tower.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 21 条
[1]   On the integral Tate conjecture for finite fields and representation theory [J].
Antieau, Benjamin .
ALGEBRAIC GEOMETRY, 2016, 3 (02) :138-149
[2]  
Atiyah M., 1962, Topology, V1, P25, DOI 10.1016/0040-9383(62)90094-0
[3]  
Benoist O., COMMENT MATH HELV
[4]  
Brown E.H., 1966, TOPOLOGY, V5, P149, DOI 10.1016/0040-9383(66)90015-2
[5]  
Colliot-Thelene J.-L., 2010, CLAY MATH P, V9, P83
[6]   From algebraic cobordism to motivic cohomology [J].
Hoyois, Marc .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 702 :173-226
[8]  
Kollar J, 1990, CLASSIFICATION IRREG
[9]  
Levine M., 2007, Springer Monographs in Mathematics
[10]   Motivic invariants of p-adic fields [J].
Ormsby, Kyle M. .
JOURNAL OF K-THEORY, 2011, 7 (03) :597-618