Exact Constants for Simultaneous Approximation of Sobolev Classes by Piecewise Hermite Interpolation

被引:4
作者
Xu, G. Q. [1 ]
Liu, Y. P. [2 ]
Xiong, L. Y. [1 ]
机构
[1] Tianjin Normal Univ, Dept Math, Tianjin 300387, Peoples R China
[2] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
piecewise Hermite interpolation; L-2-norm; eigenvalue; equidistant nodes; Wirtinger-Sobolev inequality; WEAK TRACTABILITY; ERROR-BOUNDS;
D O I
10.1007/s10476-019-0985-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the exact constants for simultaneous L-2-approximation of Sobolev classes by piecewise Hermite interpolation with equidistant nodes. The general results are applied to obtain sharp Wirtinger-Sobolev type inequalities.
引用
收藏
页码:621 / 645
页数:25
相关论文
共 18 条
[1]  
Ahlberg J.H., 1967, THEORY SPLINES THEIR
[2]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[3]   PIECEWISE HERMITE INTERPOLATION IN ONE AND 2 VARIABLES WITH APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS [J].
BIRKHOFF, G ;
SCHULTZ, MH ;
VARGA, RS .
NUMERISCHE MATHEMATIK, 1968, 11 (03) :232-&
[4]   On weak tractability of the Clenshaw-Curtis Smolyak algorithm [J].
Hinrichs, Aicke ;
Novak, Erich ;
Ullrich, Mario .
JOURNAL OF APPROXIMATION THEORY, 2014, 183 :31-44
[5]  
Krylov V. I., 1967, APPROXIMATE CALCUTAT
[6]   The best constants in the Wirtinger inequality [J].
Liu, Yongping ;
Wu, Wenyan ;
Xu, Guiqiao .
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (06)
[7]  
Novak E., 2010, Standard Information for Functionals, V2
[8]  
Novikov S. I., 1999, UKR MATH J, V51, P1693, DOI [10.1007/BF02525272, DOI 10.1007/BF02525272]
[10]   Performance advances in interferometric optical profilers for imaging and testing [J].
Schmit, J. ;
Reed, J. ;
Novak, E. ;
Gimzewski, J. K. .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2008, 10 (06)