Kernel Mapping Techniques for Deep Learning Neural Network Accelerators

被引:0
作者
Ozdemir, Sarp [1 ]
Khasawneh, Mohammad [1 ,2 ]
Rao, Smriti [1 ,3 ]
Madden, Patrick H. [1 ]
机构
[1] SUNY Binghamton CSD, Binghamton, NY 13901 USA
[2] MathWorks, Binghamton, NY USA
[3] Ixigo, Binghamton, NY USA
来源
ISPD'22: PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN | 2022年
关键词
deep learning; machine learning; combinatorial optimization; kernel mapping; placement;
D O I
10.1145/3505170.3506730
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning applications are compute intensive and naturally parallel; this has spurred the development of new processor architectures tuned for the work load. In this paper, we consider structural differences between deep learning neural networks and more conventional circuits - highlighting how this impacts strategies for mapping neural network compute kernels onto available hardware. We present an efficient mapping approach based on dynamic programming, and also a method to establish performance bounds. We also propose an architectural approach to extend the practical life time of hardware accelerators, enabling the integration of a variety of heterogenous processors into a high performance system. Experimental results using benchmarks from a recent ISPD contest are also reported.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 18 条
[1]  
Amdahl G. M., 1967, PROC APRIL 18 20 196, P483, DOI [10.1145/1465482.1465560, DOI 10.1145/1465482.1465560]
[2]   MULTIDIMENSIONAL DIVIDE-AND-CONQUER [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1980, 23 (04) :214-229
[3]   Optimality and scalability study of existing placement algorithms [J].
Chang, CC ;
Cong, J ;
Min, X .
ASP-DAC 2003: PROCEEDINGS OF THE ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, 2003, :621-627
[4]  
Chen J., 2020, P ICCAD, P1
[5]   A Survey of Accelerator Architectures for Deep Neural Networks [J].
Chen, Yiran ;
Xie, Yuan ;
Song, Linghao ;
Chen, Fan ;
Tang, Tianqi .
ENGINEERING, 2020, 6 (03) :264-274
[6]  
Cormen T., 1990, INTRO ALGORITHMS, V1st
[7]  
Dambre J., 2001, P ACM INT WORKSHOP S, P49
[8]  
Fricker J. P., 2019, PROC SUPERCOMPUTING
[9]  
He KM, 2015, Arxiv, DOI arXiv:1512.03385
[10]   ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator [J].
James, Michael ;
Tom, Marvin ;
Groeneveld, Patrick ;
Kibardin, Vladimir .
PROCEEDINGS OF THE 2020 INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN (ISPD'20), 2020, :145-149