"Almost" universality of the Lerch zeta-function

被引:0
作者
Laurincikas, Antanas [1 ]
机构
[1] Vilnius Univ, Fac Math & Informat, Inst Math, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
关键词
Lerch zeta-function; support of probability measure; universality; weak convergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lerch zeta-function L(lambda, alpha, s) with a transcendental parameter a, or with rational parameters alpha and lambda is universal, i.e., a wide class of analytic functions is approximated by shifts L(lambda, alpha, s + i tau), tau is an element of R. The case of an algebraic irrational a is an open problem. In the paper, it is proved that for all parameters alpha, 0 < alpha < 1, and lambda, 0 < lambda <= 1, including an algebraic irrational alpha, there exists a closed non-empty set of analytic functions F-alpha(,lambda) such that every function f is an element of F-alpha,F-lambda can be approximated by shifts L(lambda, alpha, s + i tau).
引用
收藏
页码:107 / 118
页数:12
相关论文
共 9 条
  • [1] Billingsley P., 2013, CONVERGE PROBAB MEAS
  • [2] Conway J. B., 1978, Functions of One Complex Variable I
  • [3] Heyer H., 1977, PROBABILITY MEASURES
  • [4] Universality of the Periodic Hurwitz Zeta-Function with Rational Parameter
    Laurincikas, A.
    Macaitiene, R.
    Mochov, D.
    Siauciunas, D.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (05) : 894 - 900
  • [5] Laurincikas A., 1997, Lithuanian Mathematical Journal, V37, P275, DOI [10.1007/BF02465359, DOI 10.1007/BF02465359]
  • [6] Laurinikas A., 2002, The Lerch zeta-function
  • [7] Lerch M., 1887, Acta Mathematica, V11, P19, DOI DOI 10.1007/BF02612318
  • [8] Lipschitz R., 1889, J REINE ANGEW MATH, P127, DOI DOI 10.1515/CRLL.1889.105.127
  • [9] Voronin S M., 1975, Izv. Akad. Nauk SSSR Ser. Mat, V39, P475