Graphitic carbon nitride "reloaded'': emerging applications beyond (photo)catalysis

被引:779
作者
Liu, Jian [1 ,2 ]
Wang, Hongqiang [3 ,4 ]
Antonietti, Markus [1 ]
机构
[1] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, D-14424 Potsdam, Germany
[2] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA
[3] Northwestern Polytech Univ, Ctr Nano Energy Mat, State Key Lab Solidificat Proc, Sch Mat Sci & Engn, Xian 710072, Peoples R China
[4] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Chem, Peach St, Liverpool L69 7ZF, Merseyside, England
关键词
PHASE C3N4 NANOSHEETS; HYDROGEN EVOLUTION; SELECTIVE DETECTION; GRAPHENE OXIDE; ASCORBIC-ACID; METAL NITRIDE; QUANTUM DOTS; NANOPARTICLES; FILM; PHOTOCATALYSIS;
D O I
10.1039/c5cs00767d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro) chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices. Finally, we attempt an outlook on possible further developments in g-C3N4 based research.
引用
收藏
页码:2308 / 2326
页数:19
相关论文
共 94 条
[1]   Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor [J].
Algara-Siller, Gerardo ;
Severin, Nikolai ;
Chong, Samantha Y. ;
Bjorkman, Torbjorn ;
Palgrave, Robert G. ;
Laybourn, Andrea ;
Antonietti, Markus ;
Khimyak, Yaroslav Z. ;
Krasheninnikov, Arkady V. ;
Rabe, Juergen P. ;
Kaiser, Ute ;
Cooper, Andrew I. ;
Thomas, Arne ;
Bojdys, Michael J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (29) :7450-7455
[2]   A simple and efficient strategy for the synthesis of a chemically tailored g-C3N4 material [J].
Bai, Xiaojuan ;
Yan, Shicheng ;
Wang, Jiajia ;
Wang, Li ;
Jiang, Wenjun ;
Wu, Songling ;
Sun, Changpo ;
Zhu, Yongfa .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (41) :17521-17529
[3]   Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media [J].
Barman, Sudip ;
Sadhukhan, Mriganka .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (41) :21832-21837
[4]   Design of fluorescent materials for chemical sensing [J].
Basabe-Desmonts, Lourdes ;
Reinhoudt, David N. ;
Crego-Calama, Mercedes .
CHEMICAL SOCIETY REVIEWS, 2007, 36 (06) :993-1017
[5]   Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications [J].
Bian, Juncao ;
Li, Qian ;
Huang, Chao ;
Li, Jianfu ;
Guo, Yao ;
Zaw, Myowin ;
Zhang, Rui-Qin .
NANO ENERGY, 2015, 15 :353-361
[6]   Preparation and Characterization of Carbon Nitride Nanotubes and Their Applications as Catalyst Supporter [J].
Bian, Shao-Wei ;
Ma, Zhuo ;
Song, Wei-Guo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) :8668-8672
[7]   Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles [J].
Bing, Wei ;
Chen, Zhaowei ;
Sun, Hanjun ;
Shi, Peng ;
Gao, Nao ;
Ren, Jinsong ;
Qu, Xiaogang .
NANO RESEARCH, 2015, 8 (05) :1648-1658
[8]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[9]   Hybrid C3N4/Fluorine-Doped Tin Oxide Electrode Transfers Hydride for 1,4-NADH Cofactor Regeneration [J].
Cazelles, R. ;
Liu, J. ;
Antonietti, M. .
CHEMELECTROCHEM, 2015, 2 (03) :333-337
[10]   Fe-g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen Peroxide and Visible Light [J].
Chen, Xiufang ;
Zhang, Jinshui ;
Fu, Xianzhi ;
Antonietti, Markus ;
Wang, Xinchen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (33) :11658-+