Spindle-shaped CeO2/biochar carbon with oxygen-vacancy as an effective and highly durable electrocatalyst for oxygen reduction reaction

被引:41
作者
Bhuvanendran, Narayanamoorthy [1 ]
Ravichandran, Sabarinathan [1 ]
Kandasamy, Sabariswaran [1 ]
Zhang, Weiqi [1 ]
Xu, Qian [1 ]
Khotseng, Lindiwe [2 ]
Maiyalagan, Thandavarayan [3 ]
Su, Huaneng [1 ]
机构
[1] Jiangsu Univ, Inst Energy Res, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Univ Western Cape, Dept Chem, ZA-7535 Cape Town, South Africa
[3] SRM Inst Sci & Technol, Dept Chem, Kattankulathur 603203, Tamil Nadu, India
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Spirulina platensis microalgae; Spindle-shaped CeO2; N; P-Carbon; Oxygen reduction reaction; Stability; NITROGEN-DOPED GRAPHENE; POROUS CARBON; ELECTROCHEMICAL PROPERTIES; METHANOL OXIDATION; FUEL-CELLS; CEO2; CERIA; CO; CATALYST; NANOPARTICLES;
D O I
10.1016/j.ijhydene.2020.10.115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly durable and active CeO2 on biochar carbon (CeO2/BC) derived from Spirulina platensis microalgae and synthesized by simple one-pot hydrothermal treatment and further activated through pyrolysis approach. A spindle-shaped morphology of CeO2 with predominant (111) facet was evidently observed from X-ray diffraction patterns and electron microscopy images. The structural features such as high specific surface area, defect-rich carbon with N & P atoms, increased oxygen vacancy and p-electron transfer play an important role for the improved oxygen reduction reaction (ORR). The considerable amount of Ce3+ and higher proportion of pyridinic N and graphitic N species are substantially contributed to the superior ORR performance of CeO2/BC700, which surpasses other similar catalysts and competing with Pt/C. Hence, the significant kinetic ORR parameters and extended stability (no loss after 5000 potential cycles) of the CeO2/BC700 catalysts provides the promising insight to develop the rare-earth metal oxide nanostructures as a possible candidate for ORR in alkaline medium. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2128 / 2142
页数:15
相关论文
共 50 条
  • [1] Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction
    Cheng, Qingqing
    Yang, Lijun
    Zou, Liangliang
    Zou, Zhiqing
    Chen, Chi
    Hu, Zheng
    Yang, Hui
    ACS CATALYSIS, 2017, 7 (10): : 6864 - 6871
  • [2] CeO2 nanowires inserted into reduced graphene oxide as active electrocatalyst for oxygen reduction reaction
    Sun, Yabo
    Chu, Yuanyuan
    Xia, Xiaoming
    Wang, Haitao
    Tan, Xiaoyao
    Dai, Zhao
    Wang, Liang
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2019, 58 (08): : 867 - 873
  • [3] Oxygen-Vacancy Dynamics and Entanglement with Polaron Hopping at the Reduced CeO2(111) Surface
    Zhang, Dawei
    Han, Zhong-Kang
    Murgida, Gustavo E.
    Veronica Ganduglia-Pirovano, M.
    Gao, Yi
    PHYSICAL REVIEW LETTERS, 2019, 122 (09)
  • [4] Pt nanodendrites anchored on bamboo-shaped carbon nanofiber arrays as highly efficient electrocatalyst for oxygen reduction reaction
    Wu, Renbing
    Xue, Yanhong
    Qian, Xukun
    Liu, Hai
    Zhou, Kun
    Chan, Siew Hwa
    Tey, Ju Nie
    Wei, Jun
    Zhu, Bin
    Huang, Yizhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (36) : 16677 - 16684
  • [5] Nanoporous PdFe alloy as highly active and durable electrocatalyst for oxygen reduction reaction
    Han, Baohai
    Xu, Caixia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (32) : 18247 - 18255
  • [6] Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction
    Lee, Myeong Jae
    Kang, Jin Soo
    Ahn, Docheon
    Chung, Dong Young
    Park, Subin
    Son, Yoon Jun
    Yoo, Ji Mun
    Shin, Heejong
    Kang, Yun Sik
    Sung, Nark-Eon
    Lee, Kug-Seung
    Sung, Yung-Eun
    ELECTROCHIMICA ACTA, 2017, 245 : 211 - 218
  • [7] Hierarchical nanoporous PtTi alloy as highly active and durable electrocatalyst toward oxygen reduction reaction
    Duan, Huimei
    Hao, Qin
    Xu, Caixia
    JOURNAL OF POWER SOURCES, 2015, 280 : 483 - 490
  • [8] Oxygen-Vacancy Rich Co3O4/CeO2 Interface for Enhanced Oxygen Reduction and Evolution Reactions
    Patowary, Suranjana
    Watson, Amber
    Chetry, Rashmi
    Sudarsanam, Putla
    Russell, Andrea E.
    Bharali, Pankaj
    CHEMCATCHEM, 2025, 17 (06)
  • [9] Pt/C Decorated with N-Doped Carbon Layers as a Highly Durable Electrocatalyst for the Oxygen Reduction Reaction
    Zhou, Shangyan
    Deng, Shaojie
    Wang, Zhengcheng
    Liao, Wei
    Chen, Meida
    Wang, Qingmei
    ENERGY & FUELS, 2021, 35 (24) : 20300 - 20308
  • [10] Structurally ordered PtFe intermetallic embedded in N-doped carbon as a highly active and durable electrocatalyst for oxygen reduction reaction
    Zhou S.
    Liao W.
    Wang Z.
    Pan H.
    Liu F.
    Lin Q.
    Wang Q.
    International Journal of Hydrogen Energy, 2022, 47 (02) : 1256 - 1266