Dynamic Phasor Analysis of Periodic Systems

被引:25
作者
Almer, Stefan [1 ]
Jonsson, Ulf [2 ]
机构
[1] ETH, Automat Control Lab, CH-8092 Zurich, Switzerland
[2] Royal Inst Technol, Div Optimizat & Syst Theory, Dept Math, S-10044 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Dynamic phasor model; harmonic Lyapunov functions; linear time-periodic systems; stability analysis;
D O I
10.1109/TAC.2009.2023970
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper considers stability analysis of linear time-periodic (LTP) systems based on the dynamic phasor model (DPM). The DPM exploits the periodicity of the system by expanding the system state in a Fourier series over a moving time window. This results in an L(2)-equivalent representation in terms of an infinite-dimensional LTI system which describes the evolution of time varying Fourier coefficients. To prove stability, we consider quadratic time-periodic Lyapunov candidates. Using the DPM, the corresponding time-periodic Lyapunov inequality can be stated as a finite dimensional inequality and the Lyapunov function can be found by solving a linear matrix inequality.
引用
收藏
页码:2007 / 2012
页数:6
相关论文
共 12 条
[1]  
ALMER S., 2008, THESIS ROYAL I TECHN
[2]  
[Anonymous], 1993, Real and Functional Analysis
[3]   Multifrequency averaging of DC/DC converters [J].
Caliskan, VA ;
Verghese, GC ;
Stankovic, AM .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 1999, 14 (01) :124-133
[4]  
Champeney D. C., 1987, A handbook of Fourier Theorems
[5]  
Khalil H. K., 2002, Nonlinear Systems, V3rd
[6]   PRINCIPLE OF VIBRATIONAL CONTROL - THEORY AND APPLICATIONS [J].
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (04) :755-762
[7]   On the Kalman-Yakubovich-Popov lemma [J].
Rantzer, A .
SYSTEMS & CONTROL LETTERS, 1996, 28 (01) :7-10
[8]   Frequency-domain analysis of linear time-periodic systems [J].
Sandberg, H ;
Möllerstedt, E ;
Bernhardsson, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (12) :1971-1983
[9]   On approximate phasor models in dissipative bilinear systems [J].
Tadmor, G .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2002, 49 (08) :1167-1179
[10]   Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties [J].
Zhou, J. .
IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (04) :946-954