A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images

被引:48
作者
Yao, Yunjun [1 ]
Liang, Shunlin [1 ]
Yu, Jian [1 ]
Chen, Jiquan [2 ]
Liu, Shaomin [3 ]
Lin, Yi [4 ,5 ]
Fisher, Joshua B. [6 ]
McVicar, Tim R. [7 ]
Cheng, Jie [1 ]
Jia, Kun [1 ]
Zhang, Xiaotong [1 ]
Xie, Xianhong [1 ]
Jiang, Bo [1 ]
Sun, Liang [8 ]
机构
[1] Beijing Normal Univ, Fac Geog Sci, Inst Remote Sensing Sci & Engn, State Key Lab Remote Sensing Sci, Beijing, Peoples R China
[2] Michigan State Univ, CGCEO Geog, E Lansing, MI 48824 USA
[3] Beijing Normal Univ, Fac Geog Sci, Sch Nat Resources, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[4] Peking Univ, Inst Remote Sensing, Beijing, Peoples R China
[5] Peking Univ, GIS, Beijing, Peoples R China
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[7] CSIRO Land & Water, Canberra, ACT, Australia
[8] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA
关键词
SENSIBLE HEAT-FLUX; EDDY-COVARIANCE; BALANCE CLOSURE; TERRESTRIAL EVAPOTRANSPIRATION; RADIOMETRIC TEMPERATURE; EVAPORATIVE FRACTION; VEGETATION COVER; WATER-BALANCE; MIXED-LAYER; RIVER-BASIN;
D O I
10.1002/2016JD026370
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A simple and robust satellite-based method for estimating agricultural field to regional surface energy fluxes at a high spatial resolution is important for many applications. We developed a simple temperature domain two-source energy balance (TD-TSEB) model within a hybrid two-source model scheme by coupling "layer" and "patch" models to estimate surface heat fluxes from Landsat thematic mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imagery. For estimating latent heat flux (LE) of full soil, we proposed a temperature domain residual of the energy balance equation based on a simplified framework of total aerodynamic resistances, which provides a key link between thermal satellite temperature and subsurface moisture status. Additionally, we used a modified Priestley-Taylor model for estimating LE of full vegetation. The proposed method was applied to TM/ETM+ imagery and was validated using the ground-measured data at five crop eddy-covariance tower sites in China. The results showthat TD-TSEB yielded root-mean-square-error values between 24.9 (8.9) and 78.2 (21.4) W/m(2) and squared correlation coefficient (R-2) values between 0.60 (0.51) and 0.97 (0.90), for the estimated instantaneous (daily) surface net radiation, soil, latent, and sensible heat fluxes at all five sites. The TD-TSEBmodel shows good accuracy for partitioning LE into soil (LEsoil) and canopy (LEcanopy) components with an average bias of 11.1% for the estimated LEsoil/LE ratio at the Daman site. Importantly, the TD-TSEB model produced comparable accuracy but requires fewer forcing data (i.e., no wind speed and roughness length are needed) when compared with two other widely used surface energy balance models. Sensitivity analyses demonstrated that this accurate operational model provides an alternative method for mapping field surface heat fluxes with satisfactory performance.
引用
收藏
页码:5211 / 5236
页数:26
相关论文
共 140 条
[41]  
IMPENS I, 1969, Archiv fuer Meteorologie Geophysik und Bioklimatologie Serie B Klimatologie Unweltmeteorologie Strahlungsforschung, V17, P403, DOI 10.1007/BF02243377
[42]   Validation of remotely sensed evapotranspiration over the Hai River Basin, China [J].
Jia, Zhenzhen ;
Liu, Shaomin ;
Xu, Ziwei ;
Chen, Yujie ;
Zhu, Mingjia .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[43]   Estimation of surface evaporation map over southern Great Plains using remote sensing data [J].
Jiang, L ;
Islam, S .
WATER RESOURCES RESEARCH, 2001, 37 (02) :329-340
[44]  
Jones H. G., 1992, Plants and microclimate: a quantitative approach to environmental plant physiology.
[45]   Recent decline in the global land evapotranspiration trend due to limited moisture supply [J].
Jung, Martin ;
Reichstein, Markus ;
Ciais, Philippe ;
Seneviratne, Sonia I. ;
Sheffield, Justin ;
Goulden, Michael L. ;
Bonan, Gordon ;
Cescatti, Alessandro ;
Chen, Jiquan ;
de Jeu, Richard ;
Dolman, A. Johannes ;
Eugster, Werner ;
Gerten, Dieter ;
Gianelle, Damiano ;
Gobron, Nadine ;
Heinke, Jens ;
Kimball, John ;
Law, Beverly E. ;
Montagnani, Leonardo ;
Mu, Qiaozhen ;
Mueller, Brigitte ;
Oleson, Keith ;
Papale, Dario ;
Richardson, Andrew D. ;
Roupsard, Olivier ;
Running, Steve ;
Tomelleri, Enrico ;
Viovy, Nicolas ;
Weber, Ulrich ;
Williams, Christopher ;
Wood, Eric ;
Zaehle, Soenke ;
Zhang, Ke .
NATURE, 2010, 467 (7318) :951-954
[46]   Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data [J].
Kalma, Jetse D. ;
McVicar, Tim R. ;
McCabe, Matthew F. .
SURVEYS IN GEOPHYSICS, 2008, 29 (4-5) :421-469
[47]   Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China [J].
Kang, E ;
Cheng, GD ;
Song, KC ;
Jin, B ;
Liu, XD ;
Wang, JY .
SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2005, 48 (04) :538-548
[48]   Examination of two methods for estimating regional evaporation using a coupled mixed layer and land surface model [J].
Kim, CP ;
Entekhabi, D .
WATER RESOURCES RESEARCH, 1997, 33 (09) :2109-2116
[49]  
Kittaka K., 2014, J HEAT ISLAND INSTIT, V9-2, P1
[50]  
Kondo J., 2000, ATMOSPHERIC SCI NEAR, P82