Dynamical estimates of chaotic systems from Poincare recurrences

被引:7
作者
Baptista, M. S. [1 ,2 ]
Maranhao, Dariel M. [3 ]
Sartorelli, J. C. [3 ]
机构
[1] Univ Aberdeen, Univ London Kings Coll, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[2] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
[3] Univ Sao Paulo, Inst Phys, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
UNSTABLE PERIODIC-ORBITS; KOLMOGOROV-ENTROPY; TIME STATISTICS; RETURN TIMES; ATTRACTORS; SERIES;
D O I
10.1063/1.3263943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show a function that fits well the probability density of return times between two consecutive visits of a chaotic trajectory to finite size regions in phase space. It deviates from the exponential statistics by a small power-law term, a term that represents the deterministic manifestation of the dynamics. We also show how one can quickly and easily estimate the Kolmogorov-Sinai entropy and the short-term correlation function by realizing observations of high probable returns. Our analyses are performed numerically in the Henon map and experimentally in a Chua's circuit. Finally, we discuss how our approach can be used to treat the data coming from experimental complex systems and for technological applications. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3263943]
引用
收藏
页数:10
相关论文
共 31 条
[1]   Recurrence time statistics for finite size intervals [J].
Altmann, EG ;
da Silva, EC ;
Caldas, IL .
CHAOS, 2004, 14 (04) :975-981
[2]  
[Anonymous], 1997, Chaos. An Introduction to Dynamical Systems
[3]   Correlation decay and return time statistics [J].
Artuso, R .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 131 (1-4) :68-77
[4]   Poincare recurrence and measure of hyperbolic and nonhyperbolic chaotic attractors [J].
Baptista, MS ;
Kraut, S ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 2005, 95 (09)
[5]   Stock market dynamics [J].
Baptista, MS ;
Caldas, IL .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 312 (3-4) :539-564
[6]   Recurrence in plasma edge turbulence [J].
Baptista, MS ;
Caldas, IL ;
Heller, MVAP ;
Ferreira, AA ;
Bengtson, RD ;
Stöckel, J .
PHYSICS OF PLASMAS, 2001, 8 (10) :4455-4462
[7]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400
[8]  
CHIRIKOV BV, 1984, 9 INT C NONL OSC KIE, V2
[9]   COMPUTING THE KOLMOGOROV-ENTROPY FROM TIME SIGNALS OF DISSIPATIVE AND CONSERVATIVE DYNAMICAL-SYSTEMS [J].
COHEN, A ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1985, 31 (03) :1872-1882
[10]  
COLLET P, 1996, DYNAMICAL SYSTEMS FR